Sol Gel Derived Materials and Biocompatible Structures: the Solid State NMR Point of View !

<u>C. Bonhomme</u>, C. Gervais, C. Coelho, <u>F. Pourpoint</u>, G. Gasquères , F. Babonneau,

T. Azaïs, <u>G. Laurent</u>, B. Alonso and F. Mauri

Laboratoire de Chimie de la Matière Condensée de Paris Laboratoire de Minéralogie-Cristallographie

Université P. et M. Curie – Paris 6, France

GERM NMR school - march 2008

NMR interactions

a tensorial approach of nuclei by local probes: the NMR interactions (CSA, J, quadrupolar, dipolar)

anisotropy: highly informative shapes

High resolution in solid state NMR

Cross Polarization experiments (under MAS)

Methods: solid state NMR, first principles calculations, models

• CHEMICAL SHIFT δ

in: Levitt, spin dynamics, 2002

C. Gervais et al., Chem. Mater. 15 (2003) 4098.

C. Bonhomme et al., MRS Proceedings (2007) E-paper.

Covalent grafting on silica nanoparticles

Covalent grafting on TiO₂ nanoparticles

a particular probe: ¹⁷O I = 5/2

second-order quadrupolar broadening

Sol Gel materials: questions ?

sol gel oxide glasses hybrid materials

mesoporous materials

ОН Ме

...

spatial interaction

H-15N

н

²⁹Si

D
J
connectivities in hybrids
organic/inorganic interactions

«playing» with the dipolar *D* and scalar *J* interactions...

Ме

Si-O-S

chemical bond

SiO₂

biogenic silica (diatoms)

DIPOLAR INTERACTION D

M. Wong Chi Man et al., Angew. Chem. 43 (2004) 203.
M. Wong Chi Man et al., New. J. Chem. 29 (2005) 653.

¹H high resolution solid state NMR. A major problem...

Ureidopyrimidinone based systems

Ureidopyrimidinones: ¹H high resolution solid state NMR

Spatial connectivities: DQ ¹H fast MAS spectroscopy

Application to ureidopyrimidinone precursors

Application to ureidopyrimidinone derived materials: hybrid silica

Towards bio-inspired materials: adenine (A) and thymine (T) derivatives

¹H BABA NMR 750 MHz/33 KHz

Silicophosphates and Si-O-P systems

biocompatible materials

grafting on nanoparticles

Calcium phosphates and substituted hydroxyapatite (HAp)

• • •

calcium phosphates

nano-crystalline CHAp

 $Ca_{10-x/2}[(PO_4)_{6-x}(CO_3)_x] [(OH)_{2-2y}(CO_3)_y]$ carbonated hydroxyapatite $x \neq 0$

Coll. : S. Hayakawa, A. Osaka, Okayama, Japan.

Crystalline silicophosphates: $Si_5O(PO_4)_6$ and SiP_2O_7 polymorphs SiP_2O_7 31**P** tetragonal Si(OR)₄ Si₂ H₃PO₄ 0, **O**₄ Si₃ Si₂ ΔΤ Ρ 0, Si₅O(PO₄)₆ SiP₂O₇ 03 monoclinic 1 Si₁ SiP_2O_7 SiP₂O₇ cubic Si₅P₆ monoclinic 2 crystalline phases -30 -40 -50 -60 -70 ppm S /Si **6**× SiP_2O_7 -monoclinic 1 ²⁹Si Si SiP₂O₇-monoclinic 2 SiP₂O₇-tetragonal SiP₂O₇-cubic SiP₂O₇ **4**× $Si_5O(PO_4)_6$ Si $Si(HPO_4)_2.H_2O$ home was a present the second of the second ?... -100 -120 -140 -160 -180 -200 -220 ppm

MAS-J derived experiments

homonuclear and heteronuclear correlations

Heteronuclear J correlations: ³¹P/²⁹Si MAS-J-HMQC

Coelho et al., Inorg. Chem. 46 (2007) 1379.

Heteronuclear J correlations: ${}^{31}P \rightarrow {}^{29}Si MAS-J-INEPT$

-2

²⁹Si, ³¹P and ¹⁷O CSA and Q parameters: Si₅O(PO₄)₆ and SiP₂O₇

Towards first principles calculations of \mathcal{J} coupling constants

the case study of $Si_5O(PO_4)_6$

INEPT	data:	J ~ [4	Hz - 1!	5 Hz]	
Coelho	et al.,	Inorg.	Chem.	46	(2007)	1379

		² J _{P-O}	- _{Si} (Hz)			
Phase	Sites	exp	calc			
	Si(1)-O(3)-P	15 ± 2	-17,08			
Si-O(PO.)	Si(2)-O(2)-P		-16,22			
	<mark>Si(2)</mark> -O(5)-P	14 & 4 ± 2	-1,17			
	Si(3)-O(4)-P	12 ± 2	-14,18			
calc. (Hz) ${}^{1}J_{P-O3}$ 61.49 ${}^{1}J_{P-O5}$ 103.73 						
by courtesy of S. Joyce, J. Yates, C. J. Pickard						
and F. Maur J. Chem. Ph	i (<u>http://arxiv.</u> ys. 2007	org/abs/0708	. <u>3589</u>) and			

Calcium phosphates and HAp structures

Biocompatible calcium phosphates

Brushite, $CaHPO_4.2H_2O$ MCPM, $Ca(H_2PO_4)_2.H_2O$ β - and γ -Ca(PO_3)_2 $Ca_4P_2O_9$

 $Ca_{10}(PO_4)_6(OH)_2$ (HAp)

hydrated, dehydrated, and hydroxylated structures

. . .

Pourpoint et al., Appl. Magn. Reson. (2008), in the press.

More from ¹H GIPAW data: H-bonding and CSA tensors

¹H *isotropic* chemical shifts

H-bonding in calcium phosphates and phosphonic acids

Gervais et al., J. Magn. Reson. 187 (2007) 181.

Brushite: CaHPO₄.2H₂O

¹H CSA tensors and orientations

Pourpoint et al., Appl. Magn. Reson. (2008), in the press.

Substituted HAp structures

$$Ca_{10} (PO_4)_6 (OH)_2$$

the fundamental role of substitutions...

Silicate substituted HAp

Gasquères et al., Magn. Reson. Chem., 46 (2008), 342-346.

Si: 4.6 wt %

Carbonated HAp

DFT models, 2D NMR, ab initio calculations: a combined approach

first principles calculations

Further reading

Advanced solid state NMR techniques for the characterization of sol-gel-derived materials Bonhomme C., Coelho C., Baccile N., Gervais C., Azaïs T., Babonneau F. Acc. Chem. Res., Vol. 40, 2007, pp. 738-746

http://www.labos.upmc.fr/lcmcp/newsite/

Equipe "Matériaux Sol-Gel et RMN"