

Imagerie RMN Les bases du codage spatial

J.M. BONNY

Introduction

Rappels historiques

Première image de Lauterbur en 1973

Prix Nobel de Physiologie ou Médecine en 2003 Lauterbur et Mansfield "for their discoveries concerning magnetic resonance imaging"

Quelques exemples ...

Novak et al., Magn. Reson. Imaging (2005)

Bonny et al., Neurobiol. Dis. (2004)

Comment obtenir (rapidement) plusieurs signaux RMN localisés ?

Outils permettant de décrypter la plupart des méthodes de codage spatial

Balayage de l'espace k Sélection de tranche

Manipulation des contrastes pas abordée

Signal d'induction libre (SIL ou *FID*)

Signal RMN au point **r** après détection en quadrature

 $S(\mathbf{r},t) = \rho(\mathbf{r}) \exp[i\phi(\mathbf{r},t)]$

Démodulation par rapport à ω_0

$$\phi(\mathbf{r},t) = \int_{0}^{t} \left[\omega(\mathbf{r},t') - \omega_{0} \right] dt'$$

Signal provenant de l'échantillon sans codage spatial

$$S(t) = \int \rho(\mathbf{r}) \exp[i\phi(\mathbf{r}, t)] d\mathbf{r}$$
$$S(t) = \int \rho(\mathbf{r}) d\mathbf{r} \qquad \text{Si } \omega(\mathbf{r}) = \omega_0$$

ALIMENTATION GERM Cargèse 2008 AGRICULTURE ENVIRONNEMENT

Signal RMN en présence de gradient de champ magnétique

http://www.dotynmr.com/mri/mri_fcgcpg.htm

Effet des bobines de gradient

$$\mathbf{G}(t) = \begin{bmatrix} G_x(t) \\ G_y(t) \\ G_z(t) \end{bmatrix} = \begin{bmatrix} \frac{\partial B}{\partial x}(\mathbf{r}, t) \\ \frac{\partial B}{\partial y}(\mathbf{r}, t) \\ \frac{\partial B}{\partial z}(\mathbf{r}, t) \end{bmatrix}$$

$$\omega(\mathbf{r},t) = \mathbf{G}\cdot\mathbf{r} + \omega_0 = \gamma \left[G_x(t)x + G_y(t)y + G_z(t)z \right] + \omega_0$$

A l'origine du repère "image" $\omega(0,t) = \omega_0$

Phase en r à t

$$\phi(\mathbf{r},t) = \int_{0}^{t} \left[\omega(\mathbf{r},t') - \omega_{0} \right] dt' = \gamma \int_{0}^{t} \mathbf{G}(t') \cdot \mathbf{r} dt' = 2\pi \mathbf{r} \cdot \mathbf{k}(t)$$

avec

$$\mathbf{k}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} \mathbf{G}(t') dt'$$

Signal provenant de l'échantillon

$$S(t) = \int \rho(\mathbf{r}) \exp[2\pi i \mathbf{r} \cdot \mathbf{k}(t)] d\mathbf{r}$$

Trajectoires dans l'espace réciproque (ou espace k)

Représentation du signal dans l'espace k

• Espace Cartésien

 $\mathbf{G}(t)$

- Coordonnées (k_x,k_y,k_z)
- Signal en t représenté par le point de coordonnées (k(t),S(t))

 $\mathbf{k}(t)$ Trajectoire dans l'espace **k**

S(t) Valeur du point de coordonnées **k**(t)

Par définition

$$S(\mathbf{k}) = \int \rho(\mathbf{r}) \exp(2\pi i \mathbf{r} \cdot \mathbf{k}) d\mathbf{r} = \mathbf{F}^{-1}(\rho(\mathbf{r}))$$

$$\mathbf{F}(S(\mathbf{k})) = \mathbf{F} \circ \mathbf{F}^{-1}(\rho(\mathbf{r})) = \rho(\mathbf{r})$$

Espace k réciproque de l'espace image

Pure phase encoded imaging

Balayage Cartésien de l'espace k

Gradients précédant l'acquisition Gradient de codage de phase Codage des 3 directions

Différents modes d'acquisition

Un point du SIL FID complet Single Point Imaging Chemical Shift Imaging

Temps d'acquisition TA = $64^3 \times 1s = 73 h$

$$TA = N_x N_y N_z TR$$

Encodage Spin Warp

Balayage Cartésien de l'espace k

Gradient pendant l'acquisition Gradient de lecture Une direction

Gradient de codage de phase Autres directions

Temps d'acquisition $TA = N_y (N_z)TR$

Balayage radial de l'espace k

Gradient pendant l'acquisition Gradient de lecture

Pas de gradient de codage de phase

Temps d'acquisition $TA = N_{\phi} (N_{\theta}) TR$

Encodage echo planar

Balayage cartesien de l'espace k

Gradient de lecture alterné

Incrément (blip) entre les phases de lecture

Temps d'acquisition TA = TR

Imagerie rapide

Conséquences du remplissage dans l'espace réciproque

GERM Cargèse 2008 AGRICULTURE ENVIRONNEMENT

Résolution spatiale

Domaine fréquentiel (espace k) à support limité

Résolution spatiale

$$\mathbf{k}_{\max} = \frac{\gamma}{2\pi} \int_{0}^{T} \mathbf{G}(t') dt'$$

Amplitude des gradients / Temps de commutation

GERM Cargèse 2008 AGRICULTURE ENVIRONNEMENT

Sélection de coupe

Principe d'une sélection de tranche

Excitation sélective d'une coupe épaisse

 $\begin{array}{c} \mbox{Application d'un gradient constant} \\ \mbox{Direction} & \mathbf{G} / \| \mathbf{G} \| \\ \mbox{Amplitude} & \| \mathbf{G} \| \end{array}$

Impulsion RF sélective en fréquence

 $\begin{array}{lll} \mbox{Fréquence centrale} & \omega \\ \mbox{Bande-Passante} & \Delta \omega \end{array}$

GERM Cargèse 2008

Impulsions sélectives

Problème inverse

Formes algébriques prédéterminées

Transformées existantes

 $B1(t) \rightarrow M_T(\omega)$ Gauss, Sinc, Sech (...) SLR, IST

ALIMENTATION AGRICULTURE

GERM Cargèse 2008

ENVIRONNEMENT

Outils permettant de décrypter le codage spatial de 99% des séquences d'imagerie :

Balayage de l'espace k Sélection de tranche

Séquences 2D

- X Sélection de tranche
- Y/Z Balayage de l'espace k

Séquences 3D

X/Y/Z Balayage de l'espace k

Ajout de gradients et d'impulsions pour manipuler le contraste

Clark et al, J Sci Food Agric (1998)

ALIMENTATION GERM Cargèse 2008 AGRICULTURE ENVIRONNEMENT

Références

Article princeps

Lauterbur

Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance.

Nature 242, 190-191 (1973)

Constant Time Imaging

Gravina, Cory Sensitivity and resolution of constant-time imaging. *J. Magn. Reson. B.* 104, 53-61 (1994)

Chemical Shift Imaging

Brown, Kincaid, Ugurbil NMR chemical shift imaging in three dimensions. *Proc Natl Acad Sci U S A.* 11, 79 (1982)

Spin Warp

Edelstein, Hutchison, Johnson, Redpath Spin warp NMR imaging and applications to human whole-body imaging. *Phys Med Biol.* 25, 751-756 (1980)

Imagerie de projections

Bergin, Pauly, Macovski Lung parenchyma : Projection reconstruction MR imaging *Radiology* 179, 777-781 (1991)

Echo Planar

Mansfield

Multi planar image formation using NMR spin echoes

J Phys C 3, L55-L58 (1977)

Espace k

Twieg

The k space trajectory formulation of the NMR imaging process with applications in the analysis and synthesis of imaging methods *Med. Phys.* 54, 338-343 (1983)

Fourier / Petits angles

Hoult

The solution of the bloch equations in the presence of a varying B1 field-An approach to selective pulse analysis

J Magn Reson 35, 69-86 (1979)

Sech / Passages adiabatiques

Silver, Joseph, Hoult Highly selective $\pi/2$ and π pulse generation *J Magn Reson* 59, 347-351 (1984)

Transformée de Shinnar/LeRoux (SLR)

Pauly, LeRoux, Nishimura, Macovski Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm *IEEE Trans. Med. Imaging* 10, 53-65 (1991)

Mise en œuvre pratique SLR

Matson

An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients

Magn. Reson. Imaging 12, 1205-1225 (1994)

GERM Cargèse 2008 AGRICULTURE ENVIRONNEMENT