Basic principles of NMR

Dominique Marion Institut de Biologie Structurale Jean-Pierre Ebel CNRS - CEA - UJF Grenoble

Summary of the lecture

Summary of the lecture

① Bloch vector model

^② Basic quantum mechanics

③ Product operator formalism

④ Spin hamiltonian

⑤ NMR building blocks

© Coherence selection - phase cycling

^⑦ Pulsed field gradients

Nuclei observable by NMR

Table	e 1.1.	Properties of some	ties of some nuclides of importance to NME	
nuclide	Ι	gyromagnetic	Natural	NMR frequency
		Ratio γ	Abundance	[MHz]
		$[10^7 \text{ rad } T^{-1} \text{ s}^{-1}]$	[%]	$(B_0=2.3488 \text{ T})$
$^{-1}$ H	1/2	26.7519	99.985	100.0
$^{2}\mathrm{H}$	1	4.1066	0.015	15.351
$^{3}\mathrm{H}$	1/2	28.5350		106.664
$^{12}\mathrm{C}$	0		98.9	
$^{13}\mathrm{C}$	1/2	6.7283	1.108	25.144
^{14}N	1	1.9338	99.63	7.224
$^{15}\mathrm{N}$	1/2	-2.7126	0.37	10.133
19 F	1'/2	25.1815	100.	94.077
^{31}P	1'/2	10.8394	100.	40.481

Why some nuclei have no spin?

The proton is composed of 3 quarks stuck together by gluons

	¹² C	13 C	14N
Atomic number	6	6	7
Mass number	6+6	6+7	7+7
Spin quantum number	0	1/2	1

Why some nuclei have no spin?

Isotopes with odd mass number

(¹H, ¹³C, ¹⁵N, ¹⁹F, ³¹P)

Isotopes with even mass number

Number of protons and neutron even

Number of protons and neutron odd

Larmor frequency

$$\frac{\mathrm{d}\,\mathrm{M}}{\mathrm{d}\mathrm{t}} = -\gamma \mathbf{B}_0^0 \wedge \mathbf{M}$$

$$B_{eff} = \sqrt{B_1^2 + (B_0 - \omega / \gamma)^2}$$

$$\frac{d}{dt}M_x = -\gamma \left(B_y M_z - B_z M_y\right)$$

$$\frac{d}{dt}M_y = -\gamma \left(B_z M_x - B_x M_z\right)$$

$$\frac{d}{dt}M_z = -\gamma \left(B_x M_y - B_y M_x\right)$$

 B_0 static magnetic field M macroscopic magnetization ^Cross-product B_1 r.f. magnetic field

 \Rightarrow Fluctuating magnetic field

Magnetization \Rightarrow Thermal equilibrium

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization 🎽

90° pulse

Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization 🐬

Transverse magnetization ****

Spin-spin relaxation

T₂

Precession in the transverse plane

The individual magnetic dipoles all have slightly different precession frequencies

 \bigcirc True T₂ relaxation

 \mathbf{O} B₀ inhomogeneity

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization 🎽

90° pulse \square Magnetization in the XY plane Precession around B₀ Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{dM}{dt} = -\gamma B_{eff} \wedge M$$

90° pulse \square Magnetization in the XY plane Precession around B₀ Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{\mathrm{d}\,\mathrm{M}}{\mathrm{d}\mathrm{t}} = -\gamma \overset{\mathrm{O}}{\mathrm{B}_{e\!f\!f}} \wedge \overset{\mathrm{r}}{M}$$

.

Subtitution
$$\dot{\mathbf{B}}_{eff}$$
 by $[B_1, 0, (B_0 - \omega / \gamma)]$

Incorporation of T_1 and T_2 relaxation times

90° pulse \square Magnetization in the XY plane Precession around B₀ Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{dM}{dt} = -\gamma B_{eff} \wedge M$$

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{\mathrm{d}\,\mathrm{M}}{\mathrm{d}\mathrm{t}} = -\gamma \overset{\mathrm{O}}{\mathrm{B}_{e\!f\!f}} \wedge \overset{\mathrm{f}}{M}$$

$$\frac{d}{dt}M_x = (\omega_0 - \omega)M_y - \frac{1}{T_2}M_x$$
$$\frac{d}{dt}M_y = -(\omega_0 - \omega)M_x - \frac{1}{T_2}M_y + \omega_1M_z$$
$$\frac{d}{dt}M_z = -\omega_1M_y - \frac{1}{T_1}(M_z - M_0)$$

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{d M}{dt} = -\gamma B_{eff} \wedge M$$

Longitudinal and transverse relaxation mechanisms are independent

$$\frac{d}{dt}M_x = (\omega_0 - \omega)M_y - \frac{1}{T_2}M_x$$

$$\frac{d}{dt}M_y = -(\omega_0 - \omega)M_x - \frac{1}{T_2}M_y + \omega_1M_z$$

$$\frac{d}{dt}M_z = -\omega_1M_y - \frac{1}{T_1}(M_z - M_0)$$

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{\mathrm{d}\,\mathrm{M}}{\mathrm{d}\mathrm{t}} = -\gamma \overset{\mathrm{O}}{\mathrm{B}_{e\!f\!f}} \wedge \overset{\mathrm{f}}{M}$$

$$\frac{d}{dt}M_x = (\omega_0 - \omega)M_y - \frac{1}{T_2}M_x$$
$$\frac{d}{dt}M_y = -(\omega_0 - \omega)M_x - \frac{1}{T_2}M_y + \omega_1M_z$$
$$\frac{d}{dt}M_z = -\omega_1M_y - \frac{1}{T_1}(M_z - M_0)$$

90° pulse \square Magnetization in the XY plane Precession around B_0 Recovery to the equilibrium state ?

1

Longitudinal magnetization **7**

Transverse magnetization ****

$$\frac{\mathrm{d}\,\mathrm{M}}{\mathrm{d}\mathrm{t}} = -\gamma \overset{\mathrm{O}}{\mathrm{B}_{e\!f\!f}} \wedge \overset{\mathrm{f}}{M}$$

$$\frac{d}{dt}M_x = (\omega_0 - \omega)M_y - \frac{1}{T_2}M_x$$

$$\frac{d}{dt}M_y = -(\omega_0 - \omega)M_x - \frac{1}{T_2}M_y + \omega_1M_z$$
$$\frac{d}{dt}M_z = -\omega_1M_y - \frac{1}{T_1}(M_z - M_0)$$

rf pulses connect the z axis with the transverse xy plane

Thermal equilibrium

Longitudinal magnetization

At room temperature « 1

Longitudinal magnetization

Thermal equilibrium

At room temperature « 1

Longitudinal magnetization

Thermal equilibrium

Longitudinal magnetization

Transverse magnetization

Coherence

What are the limitations of the Bloch equations?

What are the limitations of the Bloch equations?

Planes : no collision

What are the limitations of the Bloch equations?

Planes : no collision

Cars : collision

Basic Quantum Mechanics

 $[\mathbf{A},\mathbf{B}] = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$

Exponential operators

• Power of operators

 $\mathbf{A}^0 = \mathbb{1}$ $\mathbf{A}^1 = \mathbf{A}$ $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$ $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$

Exponential operators

• Power of operators

 $\mathbf{A}^{0} = \mathbb{1} \quad \mathbf{A}^{1} = \mathbf{A} \quad \mathbf{A}^{2} = \mathbf{A}\mathbf{A} \quad \mathbf{A}^{3} = \mathbf{A}\mathbf{A}\mathbf{A}$ As $[\mathbf{A}, \mathbf{A}] = 0 \quad \mathbf{A} \mid \mathbf{v}_{i} > = \lambda_{i} \mid \mathbf{v}_{i} > \longrightarrow \mathbf{A}^{n} \mid \mathbf{v}_{i} > = \lambda_{i}^{n} \mid \mathbf{v}_{i} >$ All power of an operator have the same eigenvector

Exponential operators

• Power of operators

 $\mathbf{A}^0 = \mathbb{1}$ $\mathbf{A}^1 = \mathbf{A}$ $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$ $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$

Exponential operators

O Power of operators

 $\mathbf{A}^0 = \mathbb{1}$ $\mathbf{A}^1 = \mathbf{A}$ $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$ $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$

2 Exponential of operators

For ordinary numbers $\exp(q) = 1 + q + \frac{1}{2!}q^2 + \frac{1}{3!}q^3 + K$ For operators $\exp(A) = 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + K$

 $exp(A+B) = exp(A) \cdot exp(B)$ only if [A,B]=0

Exponential operators

• Power of operators

 $\mathbf{A}^0 = \mathbb{1}$ $\mathbf{A}^1 = \mathbf{A}$ $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$ $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$

2 Exponential of operators

For ordinary numbers $\exp(q) = 1 + q + \frac{1}{2!}q^2 + \frac{1}{3!}q^3 + K$ For operators $\exp(A) = 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + K$

Exponential operators

• Power of operators

 $\mathbf{A}^0 = \mathbb{1}$ $\mathbf{A}^1 = \mathbf{A}$ $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$ $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$

2 Exponential of operators

For ordinary numbers
$$\exp(q) = 1 + q + \frac{1}{2!}q^2 + \frac{1}{3!}q^3 + K$$

For operators $\exp(A) = 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + K$

• Complex exponential of operators

For operators
$$E = \exp(iA) = 1 + iA + \frac{i^2}{2!}A^2 + \frac{i^3}{3!}A^3 + K$$

A hermitian $A = A^{\dagger}$ \longrightarrow $E^{-1} = E^{\dagger}$

Cyclic commutation

• Definition $[\mathbf{A}, \mathbf{B}] = i\mathbf{C}$ $[\mathbf{B}, \mathbf{C}] = i\mathbf{A}$ $[\mathbf{C}, \mathbf{A}] = i\mathbf{B}$

Cyclic permutation

Classical description

Classical description

Quantum description

 $d\sigma(t)$ $= i[\sigma(t),H]$ dt Density matrix Hamiltonian

Quantum description

Hamiltonian:

Time-independent part

Static magnetic field B₀

Scalar coupling

Time-dependent part

Radiofrequency field B₁ (pulses)

Quantum description

Density matrix

Hamiltonian

Hamiltonian:

Time-independent part

Static magnetic field B₀

Scalar coupling

Time-dependent part

Radiofrequency field B₁ (pulses)

Transformation that render the pulse Hamiltonian time-independent ? Quantum description

Rotating frame

$$\frac{d\sigma(t)}{dt} = i \left[\sigma(t), H(t) \right]$$

Rotating frame $\sigma^{r} = U \sigma U^{-1}$

$$\frac{d\sigma^{r}(t)}{dt} = i \left[\sigma^{r}(t), H^{e}\right]$$

Summary of the lecture

① Bloch vector model

^② Basic quantum mechanics

③ Product operator formalism

④ Spin hamiltonian

⑤ NMR building blocks

© Coherence selection - phase cycling

⑦ Pulsed field gradients

We use the $|\alpha\rangle$ and $|\beta\rangle$ states of the spin as a basis

We use the $|\alpha\rangle$ and $|\beta\rangle$ states of the spin as a basis

$$I_{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad I_{y} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$I_{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

We use the $|\alpha\rangle$ and $|\beta\rangle$ states of the spin as a basis

$$I_{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad I_{y} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$I_{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

The spin operators satisfy the commutation relation

 $[\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{y}}] = i \mathbf{I}_{\mathbf{z}}$

We use the $|\alpha\rangle$ and $|\beta\rangle$ states of the spin as a basis

$$I_{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad I_{y} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$I_{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

The spin operators satisfy the commutation relation

$$[I_x, I_y] = i I_z$$

$$I_{x}I_{y} - I_{y}I_{x} = \frac{1}{4} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

We use the $|\alpha\rangle$ and $|\beta\rangle$ states of the spin as a basis

$$I_{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad I_{y} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$I_{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

The spin operators satisfy the commutation relation

 $[I_x, I_y] = i I_z$

$$I_{x}I_{y} - I_{y}I_{x} = \frac{1}{4} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$I_{x}I_{y} - I_{y}I_{x} = \frac{1}{4} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} - \frac{1}{4} \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} = i\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = i I_{z}$$

Bras / Kets

Bra notation (1×2 vectors)

$$\left|\alpha\right\rangle = \begin{bmatrix}1\\0\end{bmatrix} \qquad \left|\beta\right\rangle = \begin{bmatrix}0\\1\end{bmatrix}$$

Ket notation (2×1 vectors)

$$\langle \alpha | = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\langle \beta | = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Bras / Kets

Bra notation (1×2 vectors)

 $\left|\alpha\right\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \qquad \left|\beta\right\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Ket notation (2×1 vectors)

$$\langle \alpha | = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\langle \beta | = \begin{bmatrix} 0 & 1 \end{bmatrix}$

 $\mathbf{x} = \mathbf{z}$

Bras / Kets

Bra notation (1×2 vectors)

 $\left|\alpha\right\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \qquad \left|\beta\right\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

Ket notation (2×1 vectors)

$$\langle \alpha | = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\langle \beta | = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Bra \leftarrow adjoint \rightarrow Ket $\langle n| = \{ |n \rangle \}^{\dagger}$

Bras / Kets

Bra notation (1×2 vectors)

$$|\alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |\beta\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Ket notation (2×1 vectors)

$$\langle \alpha | = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\langle \beta | = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Bra \leftarrow adjoint \rightarrow Ket $\langle nl = \{ ln > \} ^{\dagger}$ **Orthonormal basis**

$$\langle \alpha | \alpha \rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$
$$\langle \alpha | \beta \rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$
$$\langle \beta | \beta = \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$$
$$\langle \beta | \alpha \rangle = \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

Bras / Kets

Bra notation (1×2 vectors)

$$|\alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |\beta\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Ket notation (2×1 vectors)

$$\langle \alpha | = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 $\langle \beta | = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Bra
$$\leftarrow$$
 adjoint \rightarrow Ket
 $<\mathbf{nl} = \{ ln > \} \dagger$

Orthonormal basis

$$\langle \alpha | \alpha \rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$
$$\langle \alpha | \beta \rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$
$$\langle \beta | \beta = \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1$$
$$\langle \beta | \alpha \rangle = \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

Matrix representation using different basis sets can be interconverted using unitary transformation

Multispin systems

Multispin systems

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = |\alpha \alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Operators
$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = |\alpha \alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$I_z + S_z \neq \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 Incorrect !

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = |\alpha \alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = |\alpha \alpha\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$I_z^{(2spins)} = I_z^{(1spin)} \otimes E$$

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = \left| \alpha \alpha \right\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$I_z^{(2spins)} = I_z^{(1spin)} \otimes E = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} \mathbf{h} \psi > = \mathbf{h} \psi_{1} > \otimes \mathbf{h} \psi_{2} > \\ \hline \mathbf{Operators} \\ I_{z}^{(2spins)} = I_{z}^{(1spin)} \otimes E = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \end{split}$$

$$\psi > = \psi_1 > \otimes \psi_2 >$$

$$\psi_1 = |\alpha\alpha\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$I_z^{(2spins)} = I_z^{(1spin)} \otimes E = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$S_z^{(2 spins)} = E \otimes S_z^{(1 spin)}$$

$$\begin{split} \mathbf{h} \mathbf{\psi} &= \mathbf{h} \mathbf{\psi}_{1} > \otimes \mathbf{h} \mathbf{\psi}_{2} \\ \hline \mathbf{Operators} \\ I_{z}^{(2spins)} &= I_{z}^{(1spin)} \otimes E = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \\ S_{z}^{(2spins)} &= E \otimes S_{z}^{(1spin)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{split}$$

$$\begin{split} \mathbf{h} \psi \mathbf{h} &= \mathbf{h} \psi_{1} \mathbf{h} \otimes \mathbf{h} \psi_{2} \mathbf{h} \\ \mathbf{Operators} \\ I_{z}^{(2spins)} &= I_{z}^{(1spin)} \otimes E = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \\ S_{z}^{(2spins)} &= E \otimes S_{z}^{(1spin)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \end{split}$$

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

$$\psi_1 = |\alpha\alpha\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$$

 $AB_{ij} = (A \otimes B)(i \otimes i >) = A_{i} \otimes B_{i}$

Ex: $\mathbf{I}_{\mathbf{z}} | \alpha \beta \rangle = (\mathbf{I}_{\mathbf{z}} \otimes \mathbf{E})(|\alpha \rangle \otimes |\beta \rangle) = \mathbf{I}_{\mathbf{z}} | \alpha \rangle \otimes \mathbf{E} |\beta \rangle$ = $\frac{1}{2} | \alpha \rangle \otimes |\beta \rangle = \frac{1}{2} | \alpha \beta \rangle$ $\mathbf{I}_{\mathbf{z}} | \alpha \beta \rangle = \frac{1}{2} | \alpha \beta \rangle$

Ex: $I_{z} |\alpha\beta\rangle = (I_{z} \otimes E)(|\alpha\rangle \otimes |\beta\rangle) = I_{z} |\alpha\rangle \otimes E|\beta\rangle$ $= \frac{1}{2} |\alpha\rangle \otimes |\beta\rangle = \frac{1}{2} |\alpha\beta\rangle$ $I_{z} |\alpha\beta\rangle = \frac{1}{2} |\alpha\beta\rangle$ $I_{z} S_{z} |\alpha\beta\rangle = (I_{z} \otimes S_{z})(|\alpha\rangle \otimes |\beta\rangle) = I_{z} |\alpha\rangle \otimes S_{z} |\beta\rangle$ $= \frac{1}{2} |\alpha\rangle \otimes \frac{-1}{2} |\beta\rangle = \frac{-1}{4} |\alpha\beta\rangle$ $I_{z} S_{z} |\alpha\beta\rangle = \frac{-1}{4} |\alpha\beta\rangle$

Spectrum of a AX spin system

Spectrum of a AX spin system

Thermal equilibrium populations

Product operators - coherence /population

Product operators - coherence /population

Product operators - coherence /population

Spectrum of a AX spin system

Spectrum of a AX spin system

Spectrum of A

Spectrum of A

Spectrum of a AX spin system

Spectrum of A

Spectrum of a AX spin system

Spectrum of X

Spectrum of A

Spectrum of a AX spin system

Spectrum of X

Spectrum of A

Spectrum of a AX spin system

Spectrum of X

Spectrum of A

In-phase coherence of \mathbf{A} along y

In-phase coherence of \mathbf{A} along y

Anti-phase coherence of A along y

Spectrum of A

Commutation in coherence space

 $[I_x, I_y] = i I_z$

Quantum description

 $d\sigma(t)$ $= i[\sigma(t),H]$ dt

Density matrix Hamiltonian

Quantum description

 $\frac{d\sigma(t)}{dt}$ $= i[\sigma(t),H]$

Density matrix Hamiltonian

 $[\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{z}}] = i \mathbf{I}_{\mathbf{x}}$

 $[\mathbf{I}_{\mathbf{x}},\mathbf{I}_{\mathbf{y}}] = i \mathbf{I}_{\mathbf{z}}$

Quantum description

 $\frac{d\sigma(t)}{dt}$ $= i[\sigma(t),H]$

Density matrix Hamiltonian

 $[\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{z}}] = i \mathbf{I}_{\mathbf{x}}$

 $[\mathbf{I}_{\mathbf{x}},\mathbf{I}_{\mathbf{y}}] = i \mathbf{I}_{\mathbf{z}}$

 $[\mathbf{I}_{z},\mathbf{I}_{x}] = i \mathbf{I}_{y}$

Quantum description

 $\frac{d\sigma(t)}{dt} = i[\sigma(t), H]$

Density matrix Hamiltonian

 $[\mathbf{I}_{\mathbf{y}},\mathbf{I}_{\mathbf{z}}] = i \mathbf{I}_{\mathbf{x}}$

 $[\mathbf{I}_{\mathbf{z}},\mathbf{I}_{\mathbf{x}}] = i \mathbf{I}_{\mathbf{v}}$

 $[\mathbf{I}_{\mathbf{X}},\mathbf{I}_{\mathbf{V}}] = i \mathbf{I}_{\mathbf{Z}}$

 $[S_x, S_y] = i S_z$ $[S_y, S_z] = i S_x$ $[S_z, S_x] = i S_y$

 $[I_x, I_y] = i I_z$

Quantum description

 $d\sigma(t)$ $= i[\sigma(t),H]$ dt

Density matrix Hamiltonian

Quantum description

 $\frac{d\sigma(t)}{dt}$ $= i[\sigma(t),H]$

Density matrix Hamiltonian

 $[\mathbf{I}_{\mathbf{X}}, \mathbf{I}_{\mathbf{Y}}] = i \mathbf{I}_{\mathbf{Z}}$

Quantum description

 $\frac{d\sigma(t)}{dt} = i[\sigma(t), H]$

Density matrix Hamiltonian

Rule 2:

 $[I_y, I_x] = -i I_z$

 $[\mathbf{I}_{\mathbf{X}}, \mathbf{I}_{\mathbf{Y}}] = i \mathbf{I}_{\mathbf{Z}}$

Quantum description

 $\frac{d\sigma(t)}{dt} = i[\sigma(t),H]$

Density matrix Hamiltonian

Rule 2:

 $[I_y, I_x] = -i I_z$

Quantum description

 $\frac{d\sigma(t)}{dt}$ $= i[\sigma(t),H]$

Density matrix Hamiltonian

$$[\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{x}}] = -i \mathbf{I}_{\mathbf{z}}$$

Rule 3:

$$[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$

$$[\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{y}}] = i \mathbf{I}_{\mathbf{z}}$$

Rule 2:

$$[\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{x}}] = -i \mathbf{I}_{\mathbf{z}}$$

Rule 3:

$$[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$

$$[\mathbf{I}_{\mathbf{x}},\mathbf{I}_{\mathbf{y}}] = i \mathbf{I}_{\mathbf{z}}$$

$$[\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{x}}] = -i \mathbf{I}_{\mathbf{z}}$$

$$[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$

Rule 3:

$$[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$

Rule 3:

 $[\mathbf{I}_{p}, \mathbf{I}_{q}] = 0 \text{ for } (p,q) = (x,y,z)$

Rule 3:

 $[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$

Rule 3:

 $[\mathbf{I}_{p}, \mathbf{I}_{q}] = 0 \text{ for } (p,q) = (x,y,z)$

Rule 3:

 $[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$

 $[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = \mathbf{0} \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$

$$[\mathbf{I}_{p}, \mathbf{I}_{q}] = 0 \text{ for } (p,q) = (x,y,z)$$

 $[\mathbf{I}_{\mathbf{p}}, \mathbf{I}_{\mathbf{q}}] = 0 \text{ for } (\mathbf{p}, \mathbf{q}) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$

Commutation in coherence space (summary)

Cohe-		Commutator with							
rence	E	Iz	$S_{\mathbf{z}}$	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{\rm z}$	
E	0	0	0	0	0	0	0	0	
$I_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	
$S_{\mathbf{z}}$	0	0	0	0	0	Ò	0	0	
$I_{\mathbf{z}}S_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	
$I_{\mathbf{x}}$	0	$-I_y$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$	
$I_{\mathbf{v}}$	0	$I_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	$-I_{z}$	0	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$-I_{y}$	0	$I_{\mathbf{z}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	
$I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	$-I_z$	0	
$S_{\mathbf{x}}$	0	0	$-S_{\mathbf{y}}$	$-I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$-I_{\mathbf{x}}S_{\mathbf{y}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	
$S_{\mathbf{v}}$	0	0	$S_{\mathbf{x}}$	$I_z S_x$	0	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	
$I_z S_x$	0	0	$-I_z S_y$	- $S_{ m y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	$-S_{\mathbf{y}}$	0	
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	$-I_{ m z}S_{ m y}$	0	0	$S_{\mathbf{x}}$	
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}S_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0	
$I_{\mathbf{y}} S_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_{z}S_{x}$	0	0	- $S_{\mathbf{y}}$	

Table 2.3.Commutators of coherences

Table 2.3.Commutators of coherences

Cohe-	Commutator with									
rence	E	Iz	$S_{ m z}$	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{ m z}$		
Ľ	0		0	0	0	0	0	0		
I _z	0	- 0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$		
C	0	U	0	0	0	Ò	0	0		
$I_{\mathbf{z}}S_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$		
$I_{\mathbf{x}}$	0	- 4	0	IC	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$		
I _v	0	ΙΑ	ny ope	erator	$-I_z$	0	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0		
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{v}}$		utoc	0	$I_{\mathbf{z}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$		
$I_{\mathbf{v}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$	comm	ules	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	- $I_{\mathbf{z}}$	0		
$S_{\mathbf{x}}$	0	(with it	self	0	0	$-I_{\mathbf{x}}S_{\mathbf{y}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$		
$S_{\mathbf{y}}$	0	0	$S_{\mathbf{x}}$	$I_{\mathbf{z}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$		
$I_{\mathbf{z}}S_{\mathbf{x}}$	0	0	$-I_{ m z}S_{ m y}$	- $S_{ m y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0		
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0		
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	- $S_{\mathbf{y}}$	0		
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	- $I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$S_{\mathbf{x}}$		
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}S_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0		
$I_{\mathbf{y}} S_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_z S_x$	0	0	$-S_{\mathbf{y}}$		

Cohe-		Commutator with							
rence	E	Iz	$S_{\mathbf{z}}$	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{\rm z}$	
E	0	0	0	0	0	0	0	0	
$I_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	
$S_{\mathbf{z}}$	0	0	0	0	0	Ò	0	0	
$I_{\mathbf{z}}S_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	
$I_{\mathbf{x}}$	0	$-I_y$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$	
$I_{\mathbf{v}}$	0	$I_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	$-I_{z}$	0	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$-I_{y}$	0	$I_{\mathbf{z}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	
$I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	$-I_z$	0	
$S_{\mathbf{x}}$	0	0	$-S_{\mathbf{y}}$	$-I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$-I_{\mathbf{x}}S_{\mathbf{y}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	
$S_{\mathbf{v}}$	0	0	$S_{\mathbf{x}}$	$I_z S_x$	0	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	
$I_z S_x$	0	0	$-I_z S_y$	- $S_{ m y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	$-S_{\mathbf{y}}$	0	
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	$-I_{ m z}S_{ m y}$	0	0	$S_{\mathbf{x}}$	
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}S_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0	
$I_{\mathbf{y}} S_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_{z}S_{x}$	0	0	- $S_{\mathbf{y}}$	

Table 2.3.Commutators of coherences

Commutator with Cohe- $I_z S_z$ $I_{\mathbf{x}}$ $I_{\mathbf{x}}S_{\mathbf{z}}$ $I_{\rm y}S_{\rm z}$ $S_{\mathbf{z}}$ $I_{\mathbf{y}}$ Erence $I_{\mathbf{z}}$ 0.-0 0 0 0 0 0 $I_{\mathbf{y}}$ $-I_{\mathbf{x}}$ $I_{\mathbf{y}}S_{\mathbf{z}}$ $-I_{\mathbf{x}}S_{\mathbf{z}}$ 0 0 0 $I_{\mathbf{z}}$ υ Ò 0 0 υ 0 0 0 0 $I_{\mathbf{y}}S_{\mathbf{z}}$ $-I_{\mathbf{x}}S_{\mathbf{z}}$ $I_{\mathbf{y}}$ $-I_{\mathbf{x}}$ 0 $I_z S_z$ 0 0 0 $I_{\mathbf{z}}$ 0 0 $I_z S_z$ $-I_{\mathbf{y}}S_{\mathbf{z}}$ -*I*_y 0 $I_{\mathbf{x}}$ 0 $I_{\mathbf{x}}$ 0 $I_{\mathbf{x}}S_{\mathbf{z}}$ $-I_{\mathbf{z}}$ 0 $-I_{\mathbf{z}}S_{\mathbf{z}}$ 0 $I_{\mathbf{y}}$ 0 $0 \quad -I_{\mathbf{y}} \quad 0 \quad I_{\mathbf{z}}S_{\mathbf{z}}$ $-I_{y}S_{z}$ 0 I_z $I_{\mathbf{x}}S_{\mathbf{z}}$ 0 $I_{\mathbf{x}}$ $-I_{\mathbf{z}}S_{\mathbf{z}}$ 0 $-I_z$ 0 $I_{\rm y}S_{\rm z}$ $I_{\mathbf{x}}S_{\mathbf{z}}$ 0 0 $-S_{\mathbf{y}}$ $-I_{\mathbf{z}}S_{\mathbf{y}}$ $-I_{\mathbf{y}}S_{\mathbf{y}}$ 0 $S_{\mathbf{x}}$ 0 0 $I_{\mathbf{y}}S_{\mathbf{x}}$ $0 \qquad S_{\mathbf{x}} \qquad I_{\mathbf{z}}S_{\mathbf{x}}$ $S_{\mathbf{y}}$ 0 0 $[Iz,Ix] \neq 0$ $0 \qquad 0 \qquad -I_z S_y \qquad -S_y$ $I_{\mathbf{y}}S$ 0 $I_z S_x$ They do not $I_{\mathbf{y}}S$ 0 $I_z S_x \qquad S_x$ $I_z S_y$ 0 0 $-I_{\mathbf{x}}S_{\mathbf{y}}$ 0 0 commute 0 $-I_{\mathbf{y}}S_{\mathbf{x}}$ $I_{\mathbf{x}}S_{\mathbf{x}}$ 0 0 $S_{\mathbf{x}}$ $0 \qquad I_{\mathbf{x}}S_{\mathbf{y}} \qquad I_{\mathbf{y}}S_{\mathbf{x}}$ $-I_z S_y$ 0 U $I_{\mathbf{y}}S_{\mathbf{y}}$ 0 $0 -I_y S_y -I_x S_x$ $I_z S_y$ 0 0 $S_{\mathbf{x}}$ $I_{\mathbf{x}}S_{\mathbf{y}}$ $-S_{\mathbf{y}}$ $I_{\mathbf{x}}S_{\mathbf{x}} - I_{\mathbf{y}}S_{\mathbf{y}}$ $-I_z S_x$ 0 0 0 0 $I_{\mathbf{y}}S_{\mathbf{x}}$

Table 2.3.Commutators of coherences

Cohe-		Commutator with							
rence	E	$I_{\mathbf{z}}$	$S_{\mathbf{z}}$	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{\rm z}$	
E	0	0	0	0	0	0	0	0	
$I_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	
$S_{\mathbf{z}}$	0	0	0	0	0	Ò	0	0	
$I_{\mathbf{z}}S_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	
$I_{\mathbf{x}}$	0	$-I_y$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$	
$I_{\mathbf{v}}$	0	$I_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	$-I_{z}$	0	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$-I_{y}$	0	$I_{\mathbf{z}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	
$I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	$-I_z$	0	
$S_{\mathbf{x}}$	0	0	$-S_{\mathbf{y}}$	$-I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$-I_{\mathbf{x}}S_{\mathbf{y}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	
$S_{\mathbf{v}}$	0	0	$S_{\mathbf{x}}$	$I_z S_x$	0	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	
$I_z S_x$	0	0	$-I_z S_y$	- $S_{ m y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	$-S_{\mathbf{y}}$	0	
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	$-I_{ m z}S_{ m y}$	0	0	$S_{\mathbf{x}}$	
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}S_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0	
$I_{\mathbf{y}} S_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_{z}S_{x}$	0	0	- $S_{\mathbf{y}}$	

Table 2.3.Commutators of coherences

Table 2.3.Commutators of coherences

Cohe-			Cor	nmuta	tor with			
rence	E	$I_{\mathbf{z}}$	Sz	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{\rm z}$
E	0	0		0	0	0	0	0
$I_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$
$S_{\mathbf{z}}$	0	0	0	0	0	Ò	0	0
	0	0	()	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$
$I_{\mathbf{x}}$	0	-I _v	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$
Ţ	0	$I_{\mathbf{x}}$	U	$I_{\mathbf{x}}S$	_1	Ο	$-L_S$	0
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$-I_y$	Any or	erator	of I	$I_{\mathbf{z}}$
$I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$			41	0
S_{rr}	0	0	$-S_{v}$	$-I_{\pi}S$	comm	utes w		$-I_{\mathbf{v}}S_{\mathbf{v}}$
$S_{\mathbf{v}}$	0	0	$S_{\mathbf{x}}$	$I_z S$	any op	erator	of S	$I_{\mathbf{y}}S_{\mathbf{x}}$
$I_{z}S_{x}$	0	0	$-I_z S_y$	$-S_{y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$-S_{\mathbf{y}}$	0
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	- $I_{ m z}S_{ m y}$	0	0	$S_{\mathbf{x}}$
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}\tilde{S}_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0
$I_{\mathbf{y}} \dot{S_{\mathbf{x}}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_{\mathbf{z}}S_{\mathbf{x}}$	0	0	$-S_{\mathbf{y}}$

Cohe-		Commutator with							
rence	E	$I_{\mathbf{z}}$	$S_{\mathbf{z}}$	$I_z S_z$	$I_{\mathbf{x}}$	Iy	$I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\rm y}S_{\rm z}$	
E	0	0	0	0	0	0	0	0	
$I_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	
$S_{\mathbf{z}}$	0	0	0	0	0	Ò	0	0	
$I_{\mathbf{z}}S_{\mathbf{z}}$	0	0	0	0	$I_{\mathbf{y}}S_{\mathbf{z}}$	$-I_{\mathbf{x}}S_{\mathbf{z}}$	$I_{\mathbf{y}}$	$-I_{\mathbf{x}}$	
$I_{\mathbf{x}}$	0	$-I_y$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	0	$I_{ m z}S_{ m z}$	
$I_{\mathbf{v}}$	0	$I_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	$-I_{z}$	0	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	
$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$-I_{\mathbf{y}}S_{\mathbf{z}}$	0	$-I_{y}$	0	$I_{\mathbf{z}}S_{\mathbf{z}}$	0	$I_{\mathbf{z}}$	
$I_{\mathbf{y}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}S_{\mathbf{z}}$	0	$I_{\mathbf{x}}$	$-I_{\mathbf{z}}S_{\mathbf{z}}$	0	$-I_z$	0	
$S_{\mathbf{x}}$	0	0	$-S_{\mathbf{y}}$	$-I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$-I_{\mathbf{x}}S_{\mathbf{y}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	
$S_{\mathbf{v}}$	0	0	$S_{\mathbf{x}}$	$I_z S_x$	0	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	
$I_z S_x$	0	0	$-I_z S_y$	- $S_{ m y}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	
$I_{\mathbf{z}}S_{\mathbf{y}}$	0	0	$I_z S_x$	$S_{\mathbf{x}}$	$I_{\mathbf{y}}S_{\mathbf{y}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	
$I_{\mathbf{x}}S_{\mathbf{x}}$	0	$-I_{\mathbf{y}}S_{\mathbf{x}}$	$-I_{\mathbf{x}}S_{\mathbf{y}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{x}}$	$-S_{\mathbf{y}}$	0	
$I_{\mathbf{y}}S_{\mathbf{y}}$	0	$I_{\mathbf{x}}S_{\mathbf{y}}$	$I_{\mathbf{y}}S_{\mathbf{x}}$	0	$-I_{ m z}S_{ m y}$	0	0	$S_{\mathbf{x}}$	
$I_{\mathbf{x}}S_{\mathbf{y}}$	0	$-I_{\mathbf{y}}S_{\mathbf{y}}$	$I_{\mathbf{x}}S_{\mathbf{x}}$	0	0	$I_{\mathbf{z}}S_{\mathbf{y}}$	$S_{\mathbf{x}}$	0	
$I_{\mathbf{y}} S_{\mathbf{x}}$	0	$I_{\mathbf{x}}S_{\mathbf{x}}$	$-I_{\mathbf{y}}S_{\mathbf{y}}$	0	$-I_{z}S_{x}$	0	0	- $S_{\mathbf{y}}$	

Table 2.3.Commutators of coherences

(fast tumbling in liquid)

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

(J)

Scalar interaction

$$H = J \overrightarrow{I} \cdot \overrightarrow{S} = J (I_x S_x + I_y S_y + I_z S_z)$$

Scalar interaction

ion (J)

Dipolar interaction (D)

$$\mathbf{H} = \mathbf{J} \overrightarrow{\mathbf{I}} \cdot \overrightarrow{\mathbf{S}} = \mathbf{J} \left(\mathbf{I}_{x} \mathbf{S}_{x} + \mathbf{I}_{y} \mathbf{S}_{y} + \mathbf{I}_{z} \mathbf{S}_{z} \right)$$

 $\rightarrow 0$ in isotropic liquids

Terms of the spin hamiltonian (conflicts)

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Zeeman interaction

 $H = -\omega_0 I_z$

Scalar interaction

 $\mathbf{H} = \mathbf{J} \mathbf{I} \cdot \mathbf{S} = \mathbf{J} \left(\mathbf{I}_{\mathbf{x}} \mathbf{S}_{\mathbf{x}} + \mathbf{I}_{\mathbf{y}} \mathbf{S}_{\mathbf{y}} + \mathbf{I}_{\mathbf{z}} \mathbf{S}_{\mathbf{z}} \right)$

Terms of the spin hamiltonian (conflicts)

Scalar interaction

 $H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$
Terms of the spin hamiltonian (conflicts)

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Zeeman interaction

 $H = -\omega_0 I_z$

 $\mathbf{H} = \mathbf{J} \mathbf{I} \cdot \mathbf{S} = \mathbf{J} \left(\mathbf{I}_{\mathbf{x}} \mathbf{S}_{\mathbf{x}} + \mathbf{I}_{\mathbf{y}} \mathbf{S}_{\mathbf{y}} + \mathbf{I}_{\mathbf{z}} \mathbf{S}_{\mathbf{z}} \right)$

Terms of the spin hamiltonian (conflicts)

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

RF field

During the pulses

$$H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$$

Zeeman interaction

 $H = -\omega_0 I_z$

$$H = J I \cdot S = J (I_x S_x + I_y S_y + I_z S_z)$$

During the pulses

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Zeeman interaction

 $H = -\omega_0 I_z$

Hypothesis: short pulse The spins do not precess during the pulse

Scalar interaction

RF field

$$H = J I \cdot S = J (I_x S_x + I_y S_y + I_z S_z)$$

During the pulses

 $H = -\omega_1 [I_x \cos(\omega t) - I_v \sin(\omega t)]$

Zeeman interaction

Hypothesis: short pulse The spins do not precess during the pulse

Scalar interaction

RF field

During the pulses

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

RF field

Trajectories of magnetizations

RF field strength = 1000 Hz

Offsets = 100, 250, 500 Hz

RF field

$$H = -\omega_1 [I_x \cos(\omega t) - I_v \sin(\omega t)]$$

During the free precession

Zeeman interaction

 $H = -\omega_0 I_z$

 $H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Hypothesis (1) : weak coupling

 $J_{IS} \ll |\omega_I - \omega_S|$

Scalar interaction

$$H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$$

During the free precession

Zeeman interaction

 $H = -\omega_0 I_z$

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Hypothesis (1) : weak coupling

 $J_{IS} \ll |\omega_I - \omega_S|$

Scalar interaction

$$H = J \vec{I} \cdot \vec{S} = J (D_x \vec{S}_x + D_y \vec{S}_y + I_z S_z)$$

During the free precession

Zeeman interaction

 $H = -\omega_0 I_z$

 $H = J_{IS} I_z S_z$

RF field

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Zeeman interaction

 \odot

During the free

precession

 $H = -\omega_0 I_z$

Hypothesis (1) : weak coupling

 $J_{IS} << \mid \omega_I - \omega_S \mid$

$$H = J \vec{I} \cdot \vec{S} = J (I_x S_x + I_y S_y + I_z S_z)$$

RF field

$$H = -\omega_1 [I_x \cos(\omega t) - I_v \sin(\omega t)]$$

During the free precession

Zeeman interaction

 $H = -\omega_0 I_z$

 $H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$

RF field

```
During the free
precession
```

 $H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Hypothesis (2) : the chemical shift evolution is eliminated

 $H = -\omega_0 I_z$

Zeeman interaction

$$H = J I \cdot S = J (I_x S_x + I_y S_y + I_z S_z)$$

RF field

$H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]$

Hypothesis (2) : the chemical shift evolution is eliminated

Scalar interaction

 $H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$

During the free precession

Zeeman interaction

RF field

```
H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]
```

Hypothesis (2) : the chemical shift evolution is eliminated

Scalar interaction

 $H = J \mathbf{I} \cdot \mathbf{S} = J (I_x S_x + I_y S_y + I_z S_z)$

During the free precession

Zeeman interaction

 $[IzSz,IxSx] = 0 \quad \textcircled{\odot}$ $[IxSx,IySy] = 0 \quad \textcircled{\odot}$ $[IzSz,IySy] = 0 \quad \textcircled{\odot}$

During the free

Zeeman interaction

 ω_{0}

[IzSz,IxSx] = 0

[IxSx,IySy] = 0

[IzSz,IySy] = 0

precession

RF field

```
H = -\omega_1 [I_x \cos(\omega t) - I_y \sin(\omega t)]
```

Hypothesis (2) : the chemical shift evolution is eliminated

Evolution of the spin system

Zeeman interaction

$$H = -\omega_0 I_z$$

RF field

 $H = -\omega_1 [I_x \cos (\phi) - I_y \sin(\phi)]$

Scalar interaction

 $H = J_{IS} I_z S_z$

 $\exp(-i\theta H) \sigma_0 \exp(i\theta H)$ $= \sigma_0 \cos \theta + \sigma_1 \sin \theta$

 $[\sigma_0, \mathbf{H}] = i \,\sigma_1$

Evolution of the spin system

Zeeman interaction

Quantum description

$$H = -\omega_0 I_z$$

RF field

 $H = -\omega_1 [I_x \cos(\phi) - I_v \sin(\phi)]$

Scalar interaction

 $H = J_{IS} I_z S_z$

$$\frac{d\sigma(t)}{dt} = i[\sigma(t), H]$$

Density matrix

Hamiltonian

 $\exp(-i\theta H) \sigma_0 \exp(i\theta H)$ $= \sigma_0 \cos\theta + \sigma_1 \sin\theta$

 $[\sigma_0, \mathbf{H}] = i \sigma_1$

Zeeman interaction

$$H = -\omega_0 I_z$$

$$[Iy,Iz] = i Ix$$
$$[Ix,Iz] = -i Ix$$
$$[Iz,Iz] = 0$$

Zeeman interaction

$$H = - \omega_0 I_z$$

$$[Iy,Iz] = i Ix$$
$$[Ix,Iz] = -i Ix$$
$$[Iz,Iz] = 0$$

١x

Iχ

(rotating frame)

 $H = -\omega_1 [I_x \cos(\phi) - I_y \sin(\phi)]$

Phase of the rf

(rotating frame)

 $H = -\omega_1 I_x$

Scalar interaction

 $H = J_{IS} I_z S_z$

Scalar interaction

 $H = J_{IS} I_z S_z$

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = -i 2IySz

[Iz, 2IzSz] = 0

Scalar interaction

 $H = J_{IS} I_z S_z$

Evolution of the spin system (scalar coupling)

Evolution of the spin system (scalar coupling)

Summary of the lecture

① Bloch vector model

^② Basic quantum mechanics

③ Product operator formalism

④ Spin hamiltonian

⑤ NMR building blocks

© Coherence selection - phase cycling

⑦ Pulsed field gradients

Spin echoes in homonuclear spin systems

Spin echoes in homonuclear spin systems

$$\implies \mathbf{I}_{\mathbf{y}} \sin \omega_0 \Delta \implies \mathbf{-I}_{\mathbf{y}} \sin \omega_0 \Delta$$

Spin echoes in homonuclear spin systems

Spin echoes in homonuclear spin systems

Spin echoes in homonuclear spin systems

Spin echoes in homonuclear spin systems

Spin echoes in <u>homonuclear</u> spin systems

Spin echoes in heteronuclear spin systems

Spin echoes in heteronuclear spin systems

Spin echoes in heteronuclear spin systems

Spin echoes in heteronuclear spin systems

NMR building blocks (8)

Spin echoes in <u>heteronuclear</u> spin systems

NMR building blocks (8)

Spin echoes in <u>heteronuclear</u> spin systems

NMR building blocks (9)

Spin echoes in <u>heteronuclear</u> spin systems

I_x

Phase cycling

Phase cycling

Homogeneous magnetic field (well shimmed magnet)

Homogeneous magnetic field (well shimmed magnet)

> Inhomogeneous magnetic field (*field gradient*)

Refocusing condition

$$\boxed{\begin{array}{c} g_1 \tau_1 \\ g_2 \tau_2 \end{array} = \begin{array}{c} -p_1 \\ -p_2 \end{array}}$$

Imperfect 180° pulses

Refocusing pulse

Imperfect 180° pulses

Imperfect 180° pulses

Refocusing pulse

Imperfect 180° pulses

The end...

