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1 NMR Hamiltonians, a recapitulation

1.1 Interaction With an External Field B0

The interaction of a spin with the external magnetic field, that is always

described classically, is called the Zeeman interaction and is of the form:

[1.1]

or, assuming

. [1.2]

Equation [1.1] can easily be derived from the classical energy of a magnetic dipole

in a magnetic field ( ,) and the gyromagnetic equation ( ) using

the principle of correspondence.

Note that only the externally applied field is considered here. There is a

usually small difference between (Chapter 4.12) and . is the interaction

with the applied external field only. The magnetic field at the site of the nuclei ,

is modified through the electronic environment. This effect, the chemical shift, is

excluded from the Zeeman Hamiltonian.

1.2 Interaction With an Rf-Field B1

The interaction with either a linearly polarized rf field:

[1.3]

or a circularly polarized rf field:

[1.4]

is described, in complete analogy to the Zeeman Hamiltonian (Eq. [1.1]), as

*̂z γ i Îi B0⋅
i
∑–=

B0 0 0 B0, ,( )=

*̂z ω0i Î iz
i
∑=

μ

Epot μ– B⋅= μ γL=

B0

*̂BI *̂z *̂z

B0 k

Bk

B1 B1 t( ) ωrf t ϕ t( )+[ ] 0 0, ,cos( )=

B1 B1 t( ) ωrf t ϕ t( )+[ ] ωrf t ϕ t( )+[ ]sin 0, ,cos( )=
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[1.5]

In multiple-resonance experiments,  consists of a sum of individual fields.

1.3 Interaction Frame Representation

An interaction-frame representation is a concept that generalizes the rotating-

frame representation that we have discussed earlier. We describe the spin system in

an interaction frame with respect to the interaction . Here, will

be chosen close to and . An operator in the interaction frame of

reference is related to the original operator  by:

. [1.6]

We choose the rotation matrix as

[1.7]

For the case where only one type of nuclei is considered, we have

[1.8]

with the total spin operator .

To evaluate the time dependence of the density operator in the rotating frame

, we need to know the equivalent of the Liouville-von Neumann equation in the

interaction frame. The procedure followed is reminiscent of the transformation to the

rotating frame in the classical description. The relationship between and is given

by Eq. [1.6]:

[1.9]

*̂rf t( ) γ i Îi B1 t( )⋅
i
∑–=

B1

*̂0 ωr f i, Î izi∑= ωr f i,

ω0 i, *̂0 *̂z≈ A'ˆ

Â

A'ˆ R̂ t( )ÂR̂
1–

t( )=

R̂ t( ) ei*̂0t
=

*̂0 ωrf l, Î lz
l
∑ ωrf F̂z==

F̂z Îlz
l
∑=

σ'ˆ

σ̂ σ'ˆ

σ'ˆ R̂ t( )σ̂R̂
1–

t( )=

σ̂ R̂
1–

t( )σ'ˆ R̂ t( )=
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[1.10]

Here is the transformed Hamiltonian. In going from line 3 to line 4, we

have multiplied, from the left with and from the right with . We have used that

commutes with (because of [1.8]). Note that the last line in Eq. [1.10] is not just

equal to the Liouville-van Neumann equation for the dashed operators but that:

[1.11]

A new term appears which represents the fact that the new coordinate

system is accelerated with respect to the original coordinate system. Eq. [1.11] is valid

irrespective of the choice of . Often, the identification is made and

is then called the interaction-frame Hamiltonian. Then, we recover the standard

Liouville-van Neumann equation:

[1.12]

Care has to be exercised not to mix up and . By going into the interaction frame,

we have not only changed the active Hamiltonian but we have also manipulated

the time dependence of the Hamiltonian.

For the operators ,  and , we find:

[1.13]

td
d R̂

1–
σ'ˆ R̂( ) i *̂R̂

1–
σ'ˆ R̂ R̂

1–
σ'ˆ R̂*̂–[ ]–=

i– ωrf F̂zR̂
1–
σ'ˆ R̂ R̂

1–

td
d σ'ˆ R̂ R̂

1–
σ'ˆ iωrf F̂zR̂+ + i *̂R̂

1–
σ'ˆ R̂ R̂

1–
σ'ˆ R̂*̂–[ ]–=

R̂
1–

td
d σ'ˆ R̂ i *̂R̂

1–
σ'ˆ R̂ R̂

1–
σ'ˆ R̂*̂– ωrf F̂zR̂

1–
σ'ˆ R̂ R̂

1–
σ'ˆ F̂zR̂–( )–[ ]–=

td
d σ'ˆ i R̂*̂R̂

1–
σ'ˆ σ'ˆ R̂*̂R̂

1–
ωrf F̂zσ'ˆ σ'ˆ F̂z–( )–( )–[ ]–=

td
d σ'ˆ i *'ˆ ωrf F̂z– σ'ˆ,[ ]–=

*'ˆ R̂*̂R̂
1–

=

R̂ R̂
1–

F̂z R̂

td
d σ'ˆ i *'ˆ *̂0– σ'ˆ,[ ]–=

*̂0–

*̂0 *''ˆ *'ˆ *̂0–=

*''ˆ

td
d σ'ˆ *''ˆ σ'ˆ,[ ]=

*'ˆ *''ˆ

*''ˆ

Îx Îy Îz

I'ˆ x Îx ωrf t( ) Îy ωrf t( )sin+cos→

I'ˆ y Îy ωrf t( ) Îx ωrf t( )sin–cos→

I'ˆ z Îz→
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If we compare Eq. [1.13] with the expression for the transformation of a classical

vector to the rotating frame (Eq. [2.2]) we find that they are fully equivalent.

The rf-Hamiltonian in the interaction frame is given by (for simplicity, we set

):

[1.14]

For arbitrary values of , we have:

[1.15]

Often, the dash in, e.g., is left away. The interaction-frame Hamiltonian for a

spin system with a lab-frame Hamiltonian of  is given by:

[1.16]

where  and for  by

. [1.17]

ϕ t( ) 0=

*'ˆ rf γ iB1I'ˆ ix
i
∑–=

ϕ t( )

*'ˆ rf γ iB1 I'ˆ x ϕcos t( ) I'ˆ y ϕ t( )sin+( )
i
∑–=

ω1i I'ˆ x ϕcos t( ) I'ˆ y ϕ t( )sin+( )
i
∑=

I'ˆ x *''ˆ

*̂ *̂z *̂rf+=

*''ˆ *'ˆ rf ΩF̂z+=

Ω ω0 ωrf–= Ω 0=

*''ˆ *'ˆ rf=

Box I: Rotating Frame

By transforming into the rotating frame, we have:

• Changed the Hamiltonian, i.e., for , we have removed the Zeeman term.

• Removed the time-dependence from the rf Hamiltonian.

• Usually, the remaining time-dependent terms are neglected. This approximation

is called the secular approximation and must be justified on a case-by-case basis.

ωrf ω0=
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1.4 The Chemical-Shift or Chemical Shielding Hamiltonian

The magnetic field at the site of

different nuclei , differs from the

applied magnetic field, due to the

interaction with the surrounding

electrons. It is shielded by the electrons

and leads to a shift of the resonance line

in the NMR spectrum. We express the

field at the position of the nucleus as

[1.18]

The correction field is proportional

to the static field  and we can write:

[1.19]

The Hamiltonian that describes the interaction with the correction field is, therefore,

given by

[1.20]

or, in compact form:

[1.21]

The resulting Hamiltonian is a scalar operator. The quantity is the anisotropic

chemical-shielding tensor (CSA).

Bs
B0

Bk

Figure 1.1: Local B Field
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∑=
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In the interaction frame (high-field approximation), the transverse terms

and are time-dependent with the Larmor frequency with an average value of zero.

They can, therefore, be neglected as “non-secular” terms in a good approximation. In

the interaction frame, the chemical-shielding Hamiltonian simplifies to:

[1.22]

The transition frequency in the Hamiltonian is

given by and the spectrum consists of

a single line at position (if given in angular

frequencies) or at if given in ppm. If the three

principal values of are identical, we can replace

them by a scalar quantity, the so-called isotropic

chemical shift, , times a unity matrix.

The isotropic chemical shift is given by:

[1.23]

Such an isotropic interaction is also obtained in liquid phase where the tumbling of

the molecules leads to an averaged chemical shift. Here, takes then the role of

in Eq. [1.22].

The isotropic chemical shift is zero for a bare nucleus. Nuclei in molecules are

almost always more shielded than the bare nucleus. They have positive values of the

chemical shielding and, therefore, lower resonance frequencies (because ).

Often chemical shifts denoted by  are used instead of the chemical shielding :

[1.24]

The second relationship is usually a very good approximation because shieldings are

in the order of some parts per million (ppm). For proton and carbon spectroscopy

TMS (tetramethylsilan) is often taken as the reference compound. Protons as well as

carbons are well shielded in this compound and the chemical shifts of most

I'ˆ x

I'ˆ y

*'ˆ s γ kσzz
k( )B0 Îkz

k
∑=

ω ω12 0

Figure 1.2: Chemical Shift

ω12 σ– zz
k( )ω0=

ω12

σ– zz
k( )

σ k( )

σiso

σiso
1
3
--- σxx( σyy σzz )+ +=

σiso

σzz
k( )

ω0 γB0–=

δ σ

δ
σreference σ–

1 σreference–
------------------------------- σreference σ–≈=
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compounds on this scale is positive. It should be noted that NMR spectra of nuclei

with a positive are conventionally drawn with the frequency axis going from right

to left (see Box II). This is quite natural because the frequencies are negative. Often the

sign of the frequency is, however, dropped and then it looks like the frequency axis

would increase from right to left. Typical values for 13C are given in Box III.

γ

Box II: : Conventions for the Representation of an NMR Spectrum

larger chemical shift
higher resonance frequency (more negative !)
downfield
less shielded

smaller chemical shift
lower resonance frequency

upfield

more shielded

δ scale

σ scale

0

0

(reference
compound)

(bare
nucleus)

(less negative)

Box III: : Typical Chemical-Shift Values For Carbons (Isotropic Values)

δ scale

σ scale

0 ppm

TMS

0 ppm185.43 ppm

bare nucleus

0 ppm 185.40 ppm
(range of other compounds)

σ scale, shifted origin

-185.40 ppm
0 ppm



9

1.4.1 Origin of the Chemical Shielding

The numerical values for the tensor elements of can be calculated by

quantum-chemical methods for isolated molecules which are not too large (density-

functional methods). We can distinguish four important effects that contribute to the

chemical shielding. There are diamagnetic and paramagnetic effects.

1.4.1.1  Diamagnetic Effect

In a magnetic field the electron cloud

precesses and generates a reaction field that

counteracts . This effect is called the Lamb-

Shift.

An elementary calculation using the

Biot-Savart law leads to:

[1.25]

Note the increasing weight of the electron density at larger distances .

Differences in the diamagnetic Lamb shift are the dominant effect for observed proton

shifts but are less important for the heavier nuclei.

1.4.1.2 Paramagnetic Effect

The paramagnetic effect is caused

by a (partial) excitation of the electrons (by

the magnetic field) into a paramagnetic

state. This leads to a amplification of the

applied field. Low-lying electronic states

σ

B0Bd

Figure 1.3: Lamb Shift

B0
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B0

σiso
μ0e2

3me
----------- rρ r( ) rd

0

∞

∫=

ρ r( ) r

B0
induced

Figure 1.4: Paramagnetic Shift
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cause a stronger paramagnetic effect. For the understanding of the isotropic carbon

shifts the paramagnetic shift is an important contribution.

1.4.1.3 Ring-Current Effects

A magnetic field can induce a ring-

current within a system. The effect is

similar to the Lamb shift except that the

current flows through several bonds. The

current produces a field of the form

shown in the figure. Inside the ring, a

diamagnetic effect is observed, outside

the ring a paramagnetic effect. The effect

is anisotropic and depends on the

direction of the field with respect to

the ring plane.

Figure 1.6a shows an example for strong ring-current effects in 15,16-

Dihydro,15,16-dimethylpyren on the isotropic chemical shifts. The chemical shifts of

protons of the CH3 groups on top of the rings are shifted upfield to -4.23 ppm while

the protons outside the ring are shifted downfield to +8.6 ppm. The proton chemical-

shift effects close to a benzene ring as a function of the position are graphically shown

in Fig. 1.6b.

excited states paramagn. 13C shift 13C shift (TMS)

alkanes high lying small 10-50 ppm

alkenes medium medium 110-150 ppm

aromatics medium medium 110-140 ppm

ketones low high 170-230 ppm

current

B0

Figure 1.5: Ring-Current Effect

π

B0
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horizontal distance from center of benzene ring (in units of the ring radius)
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From: H. Günter: “NMR Spectroscopy”, Wiley.

Figure 1.6: Ring-Current Effects

H
CH3
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1.4.1.4 Anisotropic Neighbor Effect

The electron density

centered at a neighboring

nucleus polarizes the electron

density and leads to an induced

dipolar moment . The field

of this induced moment at the

position of spin leads to an

additional field. If the induced

moment has a magnitude which

is independent of the direction of

, the effect vanishes in the

isotropic average and is only

observed in oriented phases, if depends on the direction of the external field, an

isotropic contribution arises.

Figure 1.8 shows as an example the molecule acetylene. If the axis of the

molecule is parallel to the field, a large is induced leading to a diamagnetic

shielding, if the axis is perpendicular, a weak paramagnetic shielding is obtained.

μind

S
Ba

Ba

Figure 1.7: Anisotropic Neighbor Effects

μind

S

B0

μind

C CH H

C

C

H

H

strong diamagnetic
shielding

weak paramagnetic
(de)shielding

B0

B0

Figure 1.8: Anisotropic Neighbor Effects

μind
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1.4.2 Some Examples For Isotropic Chemical-Shift Values

The typical proton chemical-shift range lies between 0 and 11 ppm. For

carbons, a range between 0 and 180 ppm is most commonly found. Figure 1.9 shows

the typical chemical-shift ranges for protons and carbons found for characteristic

groups in organic molecules.

From: H. Günter: “NMR Spectroscopy”, Wiley.

From: H. Günter: “NMR Spectroscopy”, Wiley.

Figure 1.9: Typical Chemical Shifts for protons and Carbons
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1.4.3 Single-Crystal Spectra

The resonance frequency is proportional to the zz-element of the shielding

tensor in the laboratory frame. Because the chemical shielding tensor is defined with

respect to a molecule-fixed coordinate system we must first transform it into the

laboratory frame to obtain the resonance frequency by:

[1.26]

A particular molecular fixed coordinate system is the principal axis system (PAS),

where  is diagonal:

[1.27]

The diagonal values of this matrix are called the principal values of the chemical-

shielding tensor, the direction of the axis system, the principal directions. The ordering

of the principal values is chosen such that:

•  is the least shielded component (see Box II),

•  is the most shielded component,

•  lies in between.

The rotation matrices R that transform from one coordinate system to the other

are usually expressed in term of the three Euler angles , , . The rotation matrix

 is constructed from three successive rotations:

[1.28]

This convention implies three rotations of the coordinate system:

• first by  around the original z-axis

• second by  around the new y’-axis

• last by around the new z”-axis

The original axes (x,y,z) are rotated to the new axis (x”,y”,z”)

The inverse rotation  is given by:

σ k( ) RσMF
k( ) R 1–

=

σ

σ

σ11
k( ) 0 0

0 σ22
k( ) 0

0 0 σ33
k( )

=

σ11
k( )

σ33
k( )

σ22
k( )

α β γ

R α β γ, ,( )

R α β γ, ,( ) Rz'' γ( ) Ry' β( ) Rz α( )⋅ ⋅=

α

β

γ

R α β γ, ,( ) 1–
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[1.29]

If we transform from the PAS (original) to the Lab (final) system (Fig. 1.11), we call the

Euler angles , if we transform from the Lab (original) to the PAS (final), we

call them . They fulfill the relationship:

[1.30]

: [1.31]

γ

z=z’

z”=z’’’

x
y

x”’

y”’

β

α

finaloriginal

x’

y’=y’’

β

x”

Figure 1.10: Euler Angle Rotation
The Euler-angle rotations use three
successive rotations to describe the
coordinate transformation. First we have
a rotation about the z-axis by an angle ,
then a rotation about the y’ axis by an
angle , and last a rotation about the z’’-
axis by an angle .

α

β
γ

R α β γ, ,( )( ) 1– R γ β α– ),–,–( Rz'' α–( ) Ry' β–( ) Rz γ–( )⋅ ⋅= =

PAS Lab
(α,β,γ)

Lab PAS
 (ϕ,Θ,χ)

Figure 1.11: Coordinate Transformations

α β γ, ,( )

ϕ θ χ, ,( )

α χ–= β θ–= γ ϕ–=

R α β γ, ,( ) R ϕ θ χ, ,( )( ) 1–=
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Since the definition of the Euler angles allows only for rotations about the y

and z axis, rotations around other axis have to be constructed from these using the

sequence:

• Rotation by  around z-axis:

• Rotation by  around y-axis:

• Rotation by  around x-axis:

The cartesian matrix representation of R is, for the rotation around the z axis:

[1.32]

and around the y-axis:

[1.33]

and, therefore, for the combination of the three Euler rotations:

[1.34]

1.4.4 Determination of Principal Axes and Principal Values in a

Single Crystal

In a single crystal the principal value and the principal directions of the CSA

tensor with respect to a crystal-fixed coordinate system can be determined by

measuring at least six different, non-degenerate orientations ( , , ) of the single

crystal with respect to the external field.

In practice, the orientation dependence is measured by rotating the single

crystal around an axis perpendicular to the magnetic field and measuring the

θ R 0 0 θ, ,( )

θ R 0 θ 0, ,( )

θ R π 2⁄– θ π 2⁄, ,( )

Rz

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

=

Ry

ψcos 0 ψsin–

0 1 0
ψsin 0 ψcos

=

α β γcoscoscos α γsinsin– α β γcoscossin α γsincos+ β γcossin–

α γcossin– α β γsincoscos– α β γsincossin– α γcoscos+ β γsinsin
α βsincos α βsinsin βcos

R α β γ, ,( ) =

α β γ
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spectrum as a function of the rotation angle (e.g. ). An example for such a rotation

pattern is given in Fig. 1.12. Usually, 3 rotations around orthogonal axes are

performed, in principle, two around non-orthogonal axes are sufficient. The diagram

of the resonance frequency as a function of each of the rotation angles is called the

rotation plot and from these data, the six parameters ( , , , , , ) that define

the chemical-shielding tensor can be determined.

If the orientation of the molecule with respect to the crystal axis system is

known, i.e., if the X-ray or neutron structure is known, the orientation of the CSA in

β

Figure 1.12: 13C spectrum of a benzoic acid single crystal
13C enriched at the carboxylic position, as a function of the rotation angle.

α β γ σ11 σ22 σ33
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the molecular coordinate system can be calculated. If the orientation of the CSA with

respect to the molecular axes is known (see below), the orientation of the molecule in

the crystal axes system can be determined.

1.4.5 The Spectrum of a Powder Sample

For a powder sample, the FID (and the spectrum) is the weighted

superposition of the possible crystallite orientations:

[1.35]

Because of the axial symmetry around the direction of the applied field, the last

rotation which is around the direction of does not influence the NMR signal and

can be evaluated immediately in the above integral, leading to:

. [1.36]

The spectrum of a powdered sample (Fourier transform of Eq. [1.36]) is shown

in Fig. 1.13.

From the edges of the powder pattern, the principal values of the CSA tensor

can immediately be determined. If two of the principal values are identical, the tensor

is called axially symmetric.

Instead of , , one sometimes uses the isotropic value , the

anisotropy  and the asymmetry  to characterize a tensor:

s t( ) 1

8π2
--------- s α β γ t, , ,( ) α β β γδδsinδ

0

2π

∫
0

π

∫
0

2π

∫=

γ B0

s t( ) 1
4π
------ s α β γ t, , ,( ) α β βδsinδ

0

π

∫
0

2π

∫=

Figure 1.13: Powder patterns observed in solid phase.

σ11 σ33

σ11 σ22,

σ33

σ22

σ22

σ11 σ33

σ11 σ22 σ33 σiso
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[1.37]

, , are the same as the , , except of the ordering which is done

using the convention:

[1.38]

Here, denotes an axially symmetric tensor and varies between 0 and 1. The

shape of the tensor is only determined by while gives the width of the pattern

and a negative  leads to the mirror image of the tensor.

The orientation of the principal axes of the CSA tensor with respect to a

molecular frame of reference, however, cannot be determined from powder spectra. It

is sometimes fixed by symmetry constraints but in general it must either be calculated

or estimated using the empirical rules given in Box IV. The width of the tensors is

often in the same order of magnitude as the entire isotropic chemical shift range

(examples for 13C see Fig. 1.14)

σiso
1
3
---tr σ

˜
{ } 1

3
--- σxx( σyy σzz )+ += = δ σzz σiso–= η

σyy σxx–

δ
-----------------------=

σxx σyy σxx σ11 σ22 σ33

σzz σiso– σxx σiso– σyy σiso–≥ ≥

η 0= η

η δ

δ

Figure 1.14: Typical 13C Chemical-Shift Tensors
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A partially ordered sample will lead to a different pattern as illustrated in Fig.

1.15.

Box IV: Empirical rules for the orientation of the 13C tensor principal axis with

respect to a molecular coordinate system:

1) Methyl carbons have almost axially symmetric tensor with the unique axis along

the local threefold symmetry axis.

The tensor is averaged due to classical or tunnelling motion around the C3 axis.

2) Ring carbons possess three distinct tensor elements with

• the most shielded axis perpendicular to the plane and

• the least shielded axis bisecting the C-C-C angle of the ring carbons

3) The most shielded direction is

• perpendicular to the ring in aromatic carbons,

• along the C3 axis for methyl carbons, and

• perpendicular to the sp2 plane for carbonyl and carboxylic carbons

4) The least shielded direction is

• in the ring plane for carbon rings, bisecting the C-C-C angle,

• perpendicular to the C3 axis for methyl carbons and perpendicular to a plane of

symmetry in which the methyl group is connected

• in the sp2 plane for carbonyl and carboxyl carbons

5) The intermediately shielded direction is

• tangential to the ring for aromatic carbons,

• for non-averaged methyl groups perpendicular to the C3 axis in the plane of

symmetry,

• in the sp2 plane and perpendicular to the C-C bond for carboxyl carbons
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1.5 The Indirect Spin-Spin Coupling (J-Coupling)

Here we consider the coupling between

two nuclei which is mediated through the

electrons. An exact description is, as in the case of

the chemical shielding, a formidable task

involving the quantum description of the

electrons. If we restrict ourselves to the isotropic

coupling, we can write the J-coupling

Hamiltonian between two spins in the general

form

[1.39]

The coupling constant can be obtained by quantum-chemical methods similar to

the chemical shieldings. In general, the J coupling will be anisotropic, but the

anisotropy is seldom of practical significance and we neglect it here.

Figure 1.15: 13C Spectra of powdered and uniaxially oriented samples of spider silk
(Nephila edulis) (13C enriched at the alanine carboxylic position)

050100150200250300

fiber perpendicular to B0

fiber parallel to B0

Powder sample

I1

I2

e1

e2

Fermi Contact

Fermi ContactPauli
Principle

Figure 1.16: J Coupling

*̂J 2πJ12 Î1 Î2=

J12
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Note that the J-coupling Hamiltonian is the same in the laboratory frame and

in the rotating frame

[1.40]

because the scalar product of two vectors is independent of the coordinate system the

two individual vectors are described in.

One contribution to the indirect spin-spin coupling is the Fermi contact

interaction between electrons and nuclei. This interaction is proportional to the

probability density of the electron at the nuclear position:

. [1.41]

The Fermi-contact interaction favors an antiparallel orientation of a nuclear spin.

Through the correlation of the spins of two electrons in the same bonding orbital

(Pauli principle), this leads to an (opposite) polarization of the other electron. As a

consequence, the energy of a system with two spins that share an electron pair

depends on the relative orientation of the two spins. An antiparallel arrangement is

favored. Note that the Fermi-contact interaction is isotropic: it does not depend on the

orientation of the molecules in the magnetic field.

For a multi-spin system, the J Hamiltonian is just the sum of the individual

two-spin interactions

. [1.42]

No term with more than two spin operators appears! This is a general property of

NMR Hamiltonians, only one-particle interactions (e.g. chemical shift) and two-particle

interactions (e.g. J coupling) must be taken into account.

*'ˆ J *̂J=

J
3μ0

4π
---------βγδ re rN–( )=

*̂J 2π JijÎi Î i
i j<
∑=
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For a one-bond coupling

between two like spins, is usually

positive (see Fig. 1.17) leading to

antiparallel spins in the ground state,

for a two-bond coupling, is often

negative because the exchange integral

of overlapping orbitals favors parallel

electron spins.

These rule are, however, only

valid, if the Fermi contact interaction is the dominant source for the indirect coupling,

e.g. for proton-proton couplings but not for fluorine-fluorine couplings. There is

another source for J-coupling interactions: a dipolar interaction between the nuclear

and electron spins, combined again with the Pauli principle. This mechanism

provides a source for anisotropic J interactions. The anisotropy plays, however, no

important role except for very heavy nuclei. Typical values for isotropic J couplings

are:

spins involved J

H-H 280 Hz

H-C-H (“geminal”) 8-12 Hz

H-C-C-H (“vicinal”) 0-10 Hz

H-C-F 40-80 Hz

F-C-F 150-270 Hz

H-13C 100-250 Hz

H-C-13C 0-60 Hz

13C-13C 30-80 Hz

15N-13C 2-20 Hz

1H-15N  70-110 Hz

I1
e1

e2

Fermi Contact

Exchange interactionPauli
Principle

e3

e4 I2

Figure 1.17: J Coupling

J

J
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Multi-bond couplings are usually dependent on the conformation of the

molecule and are an important source for structural information. For vicinal protons

(3-bond coupling), the Karplus relation holds:

[1.43]

where, for two carbons in between the protons: A=9, B=-.5 C=-0.28.

1.6 Calculation of a Spectrum for a Two-Spin System in Liquid

Phase

In isotropic liquid phase, the isotropic chemical shift and the J coupling are the

only interactions necessary to describe the spin system. The Hamiltonian in the

laboratory frame of reference is given by the Zeeman term (Eq. [1.2]) the chemical-

shielding term (Eq. [1.21]) and the J coupling (Eq. [1.42]).

[1.44]

In the rotating frame, we have

[1.45]

where and are the rotating frame frequencies of the two nuclei

. The can be interpreted as the chemical shifts of the nuclei

(in angular frequencies, not in ppm) measured with respect to the rf irradiation

frequency.

We now calculate the spectrum after a pulse following the steps

outlined in Box IV for the schematic pulse sequence shown in Fig. 1.18

I) The Hamiltonian before and after the pulse is given by of Eqs. [1.44] and [1.45] in

the laboratory or rotating frame, respectively. During the pulse, the Hamiltonian is

given in the rotating frame by

[1.46]

Jiso
vic A ϕcos2 B ϕcos C+ +=

*̂ *̂z *̂S *̂J+ +=

ω0 Î1z Î2z+( ) ω0– σiso
1( ) Î1z⋅ σiso

2( ) Î2z⋅+( ) 2πJ12 Î1 Î2+=

*''ˆ Ω1 Î1z⋅ Ω2 Î2z⋅+ 2πJ12 Î1 Î2+=

Ω1 Ω2

Ωi 1 σ– iso
i( )( )ω0 ωrf–= Ωi

π 2⁄( )y

*̂

*̂p'' Ω1 Î1z⋅ Ω2 Î2z⋅+ 2πJ12 Î1 Î2 ω1 Î1y Î2y+( )+ += ω1 Î1y Î2y+( )≈
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if we assume that the rf-field amplitudes are much stronger than all the internal

interactions.

II) The initial density operator is given by (see Eq. [4.64]). is the

laboratory-frame Hamiltonian and in a good approximation we only need to consider

the dominant Zeeman term:

[1.47]

Here, is a proportionality factor and the part of the density operator proportional to

the unity operator has been omitted as discussed in Chapter 4.14.

Note that the initial density operator and the rotating-frame

Hamiltonian only consist of one-spin terms. We can, therefore, evaluate the

evolution during the pulse for each of the spins separately.

The initial density operator in matrix representation is:

[1.48]

while the Hamiltonian during the pulse is given by:

. [1.49]

*̂*̂p*̂

t=0

y

t=τ detection

Figure 1.18: Simple 1D Pulse Sequence

σ̂0 c *̂⋅= *̂

σ̂0 c Î1z Î2z+( )⋅=

c

σ̂0' σ̂0=

*p''ˆ

σ'ˆ 0 c

1
2
--- 0

0 1
2
---–

=

*''p ω1

0 i
2
---–

i
2
--- 0

=
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We can now calculate  by application of the Liouville van Neumann equation:

. [1.50]

We calculate  according to

[1.51]

where is the transformation into the eigenbase of M where is a

diagonal matrix. For diagonal matrices, we know that:

. [1.52]

Therefore, we need to diagonalize the matrix

. [1.53]

The eigenvalues are obtained as solutions of

[1.54]

and the transformation is found (by determining the eigenvectors) as:

[1.55]

Now we can determine  as:

σ'ˆ τ( )

σ'ˆ τ( ) c i*''ˆ pτ–( )exp σ'ˆ 0 i*''ˆ pτ( )exp⋅=

c iω1τ
0 i

2
---–

i
2
--- 0

–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp

1
2
--- 0

0 1
2
---–

iω1τ
0 i

2
---–

i
2
--- 0

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp⋅=

eM

eM R 1– eRMR 1–

R=

RMR 1– Λ= Λ

Λ11 0

0 Λ22

exp e
Λ11 0

0 e
Λ22

=

0 i
2
---–

i
2
--- 0

E2 i
2
---–⎝ ⎠

⎛ ⎞ i
2
---⋅– E2 1

4
---– 0= = ; E 1

2
---±=

1
2

------- i 1
i– 1

0 i
2
---–

i
2
--- 0

i– i
1 1

1
2

-------

1
2
--- 0

0 1
2
---–

=

e
iω1τ Îy–
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[1.56]

and the density operator after the pulse is given by

. [1.57]

We call the flip angle of the pulse which we chose to be .

Then we obtain for the density operator after the  pulse

[1.58]

To evaluate the NMR signal during detection, we need the two-spin

Hamiltonian . To calculate the matrix

representation of this two-spin Hamiltonian, we need to know how to calculate the

matrix representation of products and sums of spin operators. These rules are

summarized in Box V.

The matrix representation of the density operator

[1.60]

in the combined two-spin Hilbert space of both spins (of dimension ) is given

by

. [1.61]

1
2
--- i– i

1 1
e

iω1τ
2

-----------–

0

0 e

iω1τ
2

-----------

i 1
i– 1

ω1τ
2

---------cos
ω1τ

2
---------sin–

ω1τ
2

---------sin
ω1τ

2
---------cos

=

σ'ˆ τ( ) c

ω1τ
2

---------cos
ω1τ

2
---------sin–

ω1τ
2

---------sin
ω1τ

2
---------cos

1
2
--- 0

0 1
2
---–

ω1τ
2

---------cos
ω1τ

2
---------sin

ω1τ
2

---------sin–
ω1τ

2
---------cos

c
2
---

ω1τcos ω1τsin

ω1τsin ω1τcos–
= =

β ω1τ= β ω1τ π 2⁄= =
π
2
---

σ'ˆ τ( ) c
0 1

2
---

1
2
--- 0

cÎx= =

*'' Ω1 Î1z⋅ Ω2 Î2z⋅+ 2πJ12 Î1 Î2+=

σ̂ τ( ) c Î1x( ) E2( )⊗ E1( ) Î2x( ) )⊗+( )=

2x2 4=

σ' τ( ) c

0 1 2⁄ 1 2⁄ 0
1 2⁄ 0 0 1 2⁄
1 2⁄ 0 0 1 2⁄

0 1 2⁄ 1 2⁄ 0

=
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The basis functions of the combined Hilbert space of two spin 1/2 are , ,

 and .

The Hamiltonian is given by:

[1.62]

or, in matrix representation:

Box V: Direct Product and Direct Sum of Spin Operators

• Let  and  be operators that act on the same spin.

• The matrix product is defined as , normal matrix product.

• The matrix sum , normal element-wise matrix sum.

Note, both matrices have to be expressed in the same basis system.

• Let and be operators that act on different spins. The spin space where is

defined (e.g. spin 1) has dimension N, the one of  dimension M.

• The matrix product is defined as , the direct matrix product:

[1.59]

• The matrix sum is defined as where and

 are identity matrices of dimension N and M respectively.

Â B̂

A B⋅( ) A( ) B( )⋅=

A B+( ) A( ) B( )+=

Â B̂ Â

B̂

A B⋅( ) A( ) B( )⊗=

A C⋅( )
a11 C( ) .... a1N C( )

.... .... ....
aN1 C( ) .... aNN C( )

a11c11 .... a11c1M

.... .... ....
a11cM1 .... a11cMM

....
a1Nc11 .... a1Nc1M

.... .... ....
a1NcM1 .... a1NcMM

.... .... ....

aN1c11 .... aN1c1M

.... .... ....
aN1cM1 .... aN1cMM

....
aNNc11 .... aNNc1M

.... .... ....
aNNcM1 .... aNNcMM

= =

A B+( ) A( ) E2( )⊗ E1( ) B( )⊗+= E1( )

E2( )

α1α2| 〉 α1β2| 〉

β1α2| 〉 β1β2| 〉

*'' Ω1 Î1z( ) E2( )⊗( ) Ω2 E1( ) Î2z( )⊗( )+=

2πJ Î1x( ) Î2x( )⊗ Î1y( ) Î2y( )⊗ Î1z( ) Î2z( )⊗+ +( )+
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[1.63]

The detection operator is given by (see Eq. [4.56]) which has

a matrix representation of

. [1.64]

If all matrices were in the eigenbase of the Hamiltonian, the NMR signal could easily

be evaluated by:

[1.65]

with the four transition frequencies and the intensities

which, in our specific experiment, evaluate to because

. To diagonalize the Hamiltonian

*'' Ω1

1
2
--- 0 0 0

0 1
2
--- 0 0

0 0 1
2
---– 0

0 0 0 1
2
---–

Ω2

1
2
--- 0 0 0

0 1
2
---– 0 0

0 0 1
2
--- 0

0 0 0 1
2
---–

2πJ

1
4
--- 0 0 0

0 1
4
---–

1
2
--- 0

0 1
2
--- 1

4
---– 0

0 0 0 1
4
---

+ +=

Ω1 Ω2+

2
-------------------- πJ

2
-----+ 0 0 0

0
Ω1 Ω2–

2
-------------------- πJ

2
-----– πJ 0

0 πJ
Ω2 Ω1–

2
-------------------- πJ

2
-----– 0

0 0 0
Ω1 Ω2+( )–

2
---------------------------- πJ

2
-----+

=

M̂x γ Î1x Î2x+( ) γ F̂x= =

F̂x( )

0 1
2
--- 1

2
--- 0

1
2
--- 0 0 1

2
---

1
2
--- 0 0 1

2
---

0 1
2
--- 1

2
--- 0

=

M̂x〈 〉 t( ) γ σ'kl τ( ) Fx( )lk iωkl– t( )exp
l
∑

k
∑=

ωkl *''( )kk *''( )ll–=

γσ'kl τ( ) Fx( )lk cγ Fx( )lk
2

σ̂ τ( ) F̂x=
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[1.66]

we only need to diagonalize the center 2x2 block.Using the general relation for 2x2

matrices:

[1.67]

we obtain

[1.68]

with

. [1.69]

Transforming the detection operator into the eigenbase of the Hamiltonian

leads to

Ω1 Ω2+

2
-------------------- πJ

2
-----+ 0 0 0

0
Ω1 Ω2–

2
-------------------- πJ

2
-----– πJ 0

0 πJ
Ω2 Ω1–

2
-------------------- πJ

2
-----– 0

0 0 0
Ω1 Ω2+( )–

2
---------------------------- πJ

2
-----+

αcos αsin
αsin– αcos

a b
b c

αcos αsin–

αsin αcos

E2 0

0 E3

= 2α 2b
a c–
-----------⎝ ⎠
⎛ ⎞atan=

*''

Ω1 Ω2+

2
-------------------- πJ

2
-----+ 0 0 0

0 πJ
2
-----– S+ 0 0

0 0 πJ
2
-----– S– 0

0 0 0
Ω1 Ω2+( )–

2
---------------------------- πJ

2
-----+

=

S
Ω1 Ω2+

2
--------------------⎝ ⎠
⎛ ⎞

2
πJ( )2+=



31
[1.70]

where  is given by  and we obtain 4 “allowed” transitions:

for the particular solution we have assumed that is positive. In principle one should

distinguish according to the sign of J.

The basis functions that span the eigenbase of the Hamiltonian are

. [1.71]

The resulting spectrum is shown in Fig. 1.19. The appearance of the spectrum as a

function of the ratio  is displayed in Fig. 1.20.

frequency intensity

F̂x( )

0 α αsin+cos
2

-------------------------------- α αsin–cos
2

------------------------------- 0

α αsin+cos
2

-------------------------------- 0 0 α αsin+cos
2

--------------------------------

α αsin–cos
2

------------------------------- 0 0 α αsin–cos
2

-------------------------------

0 α αsin+cos
2

-------------------------------- α αsin–cos
2

------------------------------- 0

=

α 2α 2πJ
Ω1 Ω2–
--------------------⎝ ⎠
⎛ ⎞atan=

ω12
Ω1 Ω2+

2
-------------------- πJ

Ω2 Ω1–

2
--------------------⎝ ⎠
⎛ ⎞

2
πJ( )2+–+= I12

α αsin+cos
2

--------------------------------⎝ ⎠
⎛ ⎞ 2 1 2αsin+

4
-------------------------= =

ω13
Ω1 Ω2+

2
-------------------- πJ

Ω2 Ω1–

2
--------------------⎝ ⎠
⎛ ⎞

2
πJ( )2++ += I13

α αsin+cos
2

--------------------------------⎝ ⎠
⎛ ⎞ 2 1 2αsin–

4
------------------------= =

ω24
Ω1 Ω2+

2
-------------------- πJ–

Ω2 Ω1–

2
--------------------⎝ ⎠
⎛ ⎞

2
πJ( )2++= I24

α αsin+cos
2

--------------------------------⎝ ⎠
⎛ ⎞ 2 1 2αsin+

4
-------------------------= =

ω34
Ω1 Ω2+

2
-------------------- πJ–

Ω2 Ω1–

2
--------------------⎝ ⎠
⎛ ⎞

2
πJ( )2+–= I34

α αsin+cos
2

--------------------------------⎝ ⎠
⎛ ⎞ 2 1 2αsin–

4
------------------------= =

α

α1α2| 〉

αcos α1β2| 〉 αsin β1α2| 〉+

αsin– α1β2| 〉 αcos β1α2| 〉+

β1β2| 〉

k Ω2 Ω1–( ) 2πJ( )⁄=
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1.7 Allowed and Forbidden Transitions

In the example presented above, we have seen that only the transitions (12),

(13), (24), and (34) out of the six possible ones lead to a non-zero intensity in the

spectrum. They are called allowed transitions. Such transitions can only appear where

the detection operator has nonzero elements. The detection operator is always a linear

combination of and . This operator has only matrix-elements between states

with a difference in the total magnetic quantum number of 1.

[1.72]

Here, the denote the magnetic quantum numbers of the individual nuclei

contained in the spin system considered (in this example, there are only two spins).

This is the selection rule for magnetic resonance:

[1.73]

only one-quantum transitions are allowed. The zero-quantum transition (23) and the

double-quantum transition (14) are forbidden.

πJπJ

WW

πJπJ

W
Ω2 Ω1–

2
--------------------≥

ω34 ω13 ω24 ω12

Figure 1.19: Spectrum of a J-Coupled Two-Spin System

F̂
+

F̂
-

Ml mlk
l
∑=

mkl

Ml Mj– 1±=
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2π J Ω2 Ω1–»

2π J Ω2 Ω1–«

strong coupling

weak B0 field

weak coupling

strong B0 field

Figure 1.20: J-Coupled Spectra of a Two-Spin System
for a constant J as a function of the difference in resonance frequency .The
parameter k is defined as .

Ω2 Ω1–
k Ω2 Ω1–( ) 2πJ( )⁄=

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

k=9
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1.8 The Magnetic Dipole Interaction

The magnetic dipole-dipole interaction has

a classical analogy, the interaction between two

magnetic (dipole) moments and . The

classical interaction energy of two magnetic

moments located at positions connected by the

vector  is given by:

[1.74]

For the special case where the two magnetic

moments are aligned with the z-axis ( ), the

classical energy function reduces to:

[1.75]

The quantum-mechanical spin Hamiltonian is obtained from Eq. [1.137] as:

[1.76]

 is a 3x3 matrix with the elements:

[1.77]

where the are the components of a unit vector parallel to . For ,

we have

[1.78]

Θ

r12

μ1

μ2

B0

Figure 1.21: Dipole Moment

μ1 μ2
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r12
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r12
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------- μ1 r12⋅( ) μ2 r12⋅( )–
⎝ ⎠
⎜ ⎟
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=

B0

E
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------ 1

r12
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-------μ1μ2 1 3 θcos 2
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μ0

4π
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γ1γ2"

r12
3

-------------- Î1 Î2⋅
3

r12
2

------- Î1 r12⋅( ) Î2r12( )–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Î1DÎ2=

D̃

D
˜
( )αβ

μ0

4π
------

γ1γ2"

r12
3

-------------- δαβ 3eαeβ–( ) α β, x y z, ,= =

eα r12 r12 0 0 r12, ,( )=

D
˜

μ0

4π
------

γ1γ2"

r12
3

--------------
1 0 0
0 1 0
0 0 2–

=
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Using spherical coordinates for :

and the shift operators, the dipolar interaction can be rewritten in the so-called

dipolar alphabet:

[1.79]

with:

[1.80]

In the presence of a strong Zeeman interaction, one transforms into the rotating

frame. The operators and become time dependent and the terms to can be

neglected as non-secular terms leading to

. [1.81]

r12

rx r θ ϕcossin=

ry r θ ϕsinsin=

rz r θcos=

θ

ϕ

*̂D
μ0

4π
------

γ1γ2"

r12
3

-------------- Â B̂ Ĉ D̂ Ê F̂+ + + + +[ ]=

Â Î1zÎ2z 1 3 θ2cos–( )=

B̂ Î1
+

Î2
-

Î1
-
Î2

+
+( )3 θ2cos 1–

4
---------------------------=

Ĉ Î1
+

Î2z Î1zÎ2
+

+( ) 3 θ θe iϕ–cossin–
2

----------------------------------------=

D̂ Î1
-
Î2z Î1zÎ2

-
+( ) 3 θ θeiϕcossin–

2
--------------------------------------=

Ê Î1
+

Î2
+ 3– θ2e 2iϕ–sin

4
---------------------------------=

F̂ Î1
-
Î2

- 3– θ2e2iϕsin
4

------------------------------=

Î
+

Î
-

Ĉ F̂

*̂D'
μ0

4π
------

γ1γ2"

r12
3

-------------- Â B̂+( )=
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The term remains obviously always invariant when going into the rotating

frame since it contains only operators. For the term , two situations must be

distinguished:

• Homonuclear case (both nuclei have the same Zeeman-frequency and the same

rotating frame transformation applies): Here is time-independent and

must be taken into account.

• Heteronuclear case: Here we need two different rotating frames for the two spins

rotating at their specific Larmor frequencies. In the rotating frame, the term

is time-dependent with a frequency equal to the difference of the two

Larmor frequencies. Therefore, it can be neglected as non secular in excellent

approximation.

The simplified secular rotating-frame dipolar-coupling Hamiltonian is of the

form

• for a homonuclear spin pair:

[1.82]

• for a heteronuclear spin pair:

[1.83]

The constant

[1.84]

is often called the dipolar coupling constant.

1.8.1 Spectrum of a Heteronuclear Dipolar-Coupled Spin Pair

Assuming that the rotating-frame Hamiltonian consists only of the dipolar

interaction, it has the form:

Â

Îz B̂

Î1
+

Î2
-

Î1
-
Î2

+
+

Î1
+

Î2
-

Î1
-
Î2

+
+

*'ˆ D
μ0

4π
------

γ1γ2"

r12
3

-------------- 1 3 θ2cos–( )
2

-------------------------------- 2 Î1zÎ2z
1
2
--- Î1

+
Î2

-
Î1

-
Î2

+
+( )–=

*'ˆ D
μ0

4π
------

γ1γ2"

r12
3

-------------- 1 3 θ2cos–( )
2

--------------------------------2 Î1zÎ2z=

d
μ0

4π
------

γ1γ2"

r12
3

-------------- 1 3 θ2cos–( )
2

--------------------------------=
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[1.85]

with the matrix representation

[1.86]

This leads to the transition frequencies for the allowed

transitions of:

[1.87]

and a spectrum with two lines with a splitting of as

shown in Fig. 1.22.

1.8.2 Spectrum of a Homonuclear Dipolar-Coupled Spin Pair

Here the term must also be taken into account. In this case has

permutation symmetry with respect to an exchange of the two nuclei:

[1.88]

As a consequence, the eigenfunctions transform according to the irreducible

representations A and B of the permutation group of two elements. From this

argument we obtain immediately the Eigenfunctions:

• Symmetric representation A:

[1.89]

*''ˆ *'ˆ D 2dÎ1zÎ2z= =

*''( ) 2d

1
4
--- 0 0 0

0 1
4
---– 0 0

0 0 1
4
---– 0

0 0 0 1
4
---

=

2d

Figure 1.22: Dipolar Splitting

ω1 *''( )11 *''( )22– d= =

ω2 *''( )33 *''( )44– d–= =

2d

B̂ *̂

P̂ 12( )*̂ *̂=

φ1 αα=

φ2
1
2

------- αβ βα+( )=

φ3 ββ=
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• Anti-symmetric representation B:

[1.90]

We can now calculate the diagonal elements of  in this basis and obtain

[1.91]

The transition frequencies for the allowed transitions

are

[1.92]

and the spectrum has two lines with a splitting of

as shown in Fig. 1.23

Exercise: Show that the allowed transitions in this case are indeed the 1-2 and

2-3 transitions.

1.8.3 Intermediate Cases

The spectrum of two dipolar-coupled nuclei can be calculated in almost

complete analogy to the one of two J-coupled nuclei. The matrix representation of the

Hamiltonian is given by (compare to Eq. [1.66]!):

φ4
1
2

------- αβ βα–( )=

*D'

E1 φ1〈 |* φ1| 〉
d
2
---= =

E2 φ2〈 |* φ2| 〉 d–= =

E3 φ3〈 |* φ3| 〉
d
2
---= =

E4 φ4〈 |* φ4| 〉 0= =

3d

Figure 1.23: Dipolar Splitting

ω1 E1 E2–( ) 3d
2

------= =

ω2 E2 E3–( ) 3d–
2

---------= =

3d
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Figure 1.24:  Measured Dipolar Splitting
between the two protons in p-toluoic acid at room temperature and at 10 K. The experiment
manifests the proton tautometrism.
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[1.93]

Note that the off-diagonal matrix elements have the same size as the diagonal matrix

elements while, in the case of the J-coupling Hamiltonian, they were a factor two

larger!

With we obtain again four “allowed” transitions with the

following frequencies and intensities:

The resulting spectra are plotted in Fig. 1.25.

frequency intensity
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strong coupling

weak B0 field

weak coupling

strong B0 field

Figure 1.25: D-Coupled Spectra of a Two-Spin System
for constant D as a function of the difference in resonance frequency .The parameter
k is defined as .
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2 The general Form of Hamiltonians, Symmetry

Arguments
ccccThec

2.1 The Basic Interactions

The basic spin Hamiltonians for all practically relevant interactions in

magnetic resonance contain either one or two spin operators. Terms with a single spin

operator appear in the context of the interaction of a spin with a classical field, e.g.,

the magnetic field . They are of the general form

The Hamiltonians for the most important interactions in solid-state NMR are

discussed in this Chapter. We introduce the interactions first in a Cartesian

description where they have the general form

[2.1]

for spin-spin interactions and

[2.2]

for interactions between the spin and the magnetic field. In both cases is a 3x3

matrix that describes the strength and the angular dependence of the interaction.

In the second part, the link to a symmetry-adapted description of the spin

interactions, using spatial spherical tensors and irreducible spherical-tensor

operators, is provided. In such a description the laboratory-frame Hamiltonian can

be written in a concise form as the scalar products between a spherical spatial tensor

and a spherical spin-tensor operator. The scalar product can be expressed as a sum of

products of spherical-tensor components

. [2.3]

Advantages, but also limitations associated with the spherical-tensor formulation

will be discussed.

*̂
k n,( )

Îk A k n,( ) În⋅ ⋅=

*̂
k B,( )

Îk A k B,( ) B⋅ ⋅=

A

*̂
i( )

A,
i( )

,
∑ 7

ˆ
,
i( )

⋅ 1–( )qA,q
i( )

7̂, q–,
i( )

q ,–=

,

∑
,
∑= =

B
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[2.4]

where the operators with are the usual spin operators of spin that

can be represented by the Pauli matrices. The field is always

described as a classical quantity, the magnetic-field vector. The quantization of the

field in the context of quantum electrodynamics is possible but unnecessary in

magnetic resonance.

The strongest interaction in high-field NMR, the Zeeman interaction, is of this

form. Details and other examples will be given below. The strength and the angular

dependence of the interaction is specified by the nine components with

of the 3x3 matrix which is often referred to as the spatial part of

the interaction, in contrast to the spin part which contains the spin operators.

Two-spin interactions between spins and can be formulated by a

Hamiltonian of the form

. [2.5]

Such a Hamiltonian describes the coupling between two spins ( ) which can be

electron or nuclear spins. Examples include the J coupling, the dipolar coupling, and

the hyperfine coupling. The same form of a Hamiltonian describes the quadrupole

interaction where square terms of a single spin appear and which can be written in

the same form with . The strength and the angular dependence of a spin-spin

interaction are described by the matrix .

The two basic forms for the Hamiltonian as given by Eqs. [2.4] and [2.5] can be

reformulated as a scalar product of two vectors

[2.6]

*̂
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⋅ ⋅= =

Îkα α x y z, ,= k

B Bx By Bz, ,( )T=

aαβ
α β, x y z, ,= A k B,( )

k n
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k n,( )
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⎜ ⎟
⎜ ⎟
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*̂
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Î
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and

, [2.7]

respectively, with the spatial vector

[2.8]

and the spin vector operator

[2.9]

or

. [2.10]

The scalar product in this vector space is defined as

. [2.11]

The vectors , , and have always a dimension of nine. The vector

forms a nine-dimensional subspace of the full 16-dimensional Liouville space

spanned by the operators of Eq. [2.9]. The Hamiltonian describes the energy of the

system and must, therefore, be a scalar quantity. This compact notation will become

important in the context of the spherical-tensor notation of Hamiltonians (Chapter

2.2).

2.1.1 Some Symmetry Considerations For The Matrix A

It is often convenient to split the matrix  into three components

[2.12]

with

[2.13]

*̂
k n,( )

A
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Î
k n,( )

⋅=

A
k n,( )
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Î
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Î
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*
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A
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a 0 0

0 a 0

0 0 a⎝ ⎠
⎜ ⎟
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⎜ ⎟
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where the quantity  is equal to one third of the trace of the matrix , i.e.,

. [2.14]

It is well known that is invariant under rotations of the coordinate system. The

matrix is, therefore, often referred to as the isotropic component or the zeroth-

rank component of the matrix .

The traceless and symmetrized part of the matrix  is of the form

[2.15]

and is often referred to as the second-rank component.

Now we can calculate the remaining component  as

. [2.16]

This matrix is anti symmetric and traceless and is called the first-rank component. It

will turn out later, that the anti-symmetric component can normally not be observed

in NMR experiments.

We will see later that the three components of the matrix A have the properties

of Cartesian tensors of rank 0, rank 1, and rank 2. The properties of Cartesian tensors

will be more formally introduced in Chapter 1.11. For the moment it is sufficient to

keep in mind that the three matrix components and tensors are equivalent.
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⎜ ⎟
⎛ ⎞
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2.1.2 Cartesian Tensor Quantities

The field of tensor analysis in general is quite complex and forms, as an

example, the basis of Einstein’s treatment of general relativity. In magnetic resonance,

as in many engineering sciences, a much simpler version of the full theory is

sufficient. Here, we only introduce this simple treatment.

We have already noticed in Chapter 2.1.1 that a full 3x3 matrix can be

decomposed into three different components. The rank-zero component is

characterized by a single number, the rank-one component by three different

numbers, which can be represented by a vector in normal three-dimensional space

and a rank-two component which has five independent components that can be

written in a matrix. Note that also the rank-zero and rank-one components can be

written as matrices if desired.

A further important distinction between tensors of different rank is their

transformation behavior under rotations which will be discussed in the following.

2.1.2.1 Tensors of Rank Zero: Scalars

Some physical quantities are independent of the coordinate system they are

described in. One example of such a quantity is the distance between two points

 and . The distance is given by the

. [2.17]

If we apply a coordinate transformation, the new coordinates of the two points are

given by  and , the distance is given by

. [2.18]

Independent of the choice of coordinate system, we will always find

rxy

x x1 x2 x3, ,( )= y y1 y2 y3, ,( )=

rxy xi yi–( )2

i 1=

3

∑=

x' x'1 x'2 x'3, ,( )= y' y'1 y'2 y'3, ,( )=

r'xy x'i y'i–( )2

i 1=

3

∑=
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. [2.19]

In a more general notation we can write for a a tensor of rank zero or a scalar quantity

 under a coordinate transformation

. [2.20]

Since the Hamiltonian describes the energy of a system and the energy is a scalar

quantity, the Hamiltonian also has to be a scalar or a tensor of rank zero.

2.1.2.2 Tensors of Rank One: Vectors

The coordinates of a point in space are an example for a tensor of rank one that

can be represented by a vector. If we apply a coordinate transformation characterized

by the rotation matrix  the coordinates of a point transform like

[2.21]

or

. [2.22]

In a more general notation we can write for a tensor of rank one, ,

under a coordinate transformation

[2.23]

or for the elements  of the first-rank tensor

. [2.24]
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2.1.2.3 Tensors of Rank Two: Symmetric Traceless Matrices

Quantities that are represented by a symmetric traceless matrix in Cartesian

space, e.g., the dipolar-coupling tensor

[2.25]

are called second-rank tensors. Under a coordinate transformation characterized by

the rotation matrix such a tensor of rank two transforms according to

[2.26]

or for the matrix elements

[2.27]

In a more general notation we can write for a tensor of rank two,

, [2.28]

under a coordinate transformation

[2.29]

or for the elements of the second-rank tensor

. [2.30]

The traceless symmetric matrix that describes the second-rank tensor has 5

independent components: three linearly independent off-diagonal elements and two

linearly independent diagonal elements.
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A general matrix has nine independent components. As we have already

seen in Chapter 2.1.1, a general matrix can be decomposed into three parts, namely

the trace of the matrix

, [2.31]

the traceless anti-symmetric part of the matrix (three independent components)

, [2.32]

and the traceless symmetric part of the matrix (five independent components)

. [2.33]

Under a rotation, the components of , , and transform amongst

themselves, i.e., the three parts do not mix. We say that the tensor components

, , and are the irreducible components of the matrix . They belong to the

representations , and of the rotation group. This implies that the trace of a

general matrix is invariant under rotations, i.e., it behaves like a scalar, while the anti-

symmetric part of the tensor behaves under a rotation like a vector (tensor of rank

one), and the symmetric traceless component behaves like a second-rank tensor.

2.1.3 Rotation of Cartesian Tensors

As already pointed out in Chapter 2.1.2.3, we can represent a generalized

second-rank tensor as a matrix. The rotation of such a matrix can be written as

. [2.34]

Such a rotation can also be formulated as a vector operation in the space introduced in

Chapter 2.1 where we wrote the matrix  as a nine-dimensional vector

. [2.35]

The rotation is then given by

A
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aij
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˜
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A
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50
[2.36]

with the 9x9 rotation matrix  defined as

. [2.37]

In the general case, will be a full 9x9 matrix (see Fig. 2.1a). As

discussed in Chapter 2.1.1, we can use the fact that the components belonging to

different ranks do not intermix under rotations to block diagonalize the rotation

matrix. The nine elements of can be linearly combined to obtain a rank-separated

basis according to Eqs. [2.14] - [2.16] to yield

.[2.38]

A
(new)

R̃ α β γ, ,( )A
(old)

=

R̃

R̃ α β γ, ,( ) R α β γ, ,( ) R α β γ, ,( )⊗=

R̃ α β γ, ,( )

= .

Figure 2.1: Tensor Rotations
Rotation of a Cartesian tensor in a) the standard basis and b) one possible rank-sorted basis.
In the standard basis the rotation matrix is a full 9x9 block while in the rank-sorted basis the
rotation matrix is block diagonal. The black 1x1 block rotates the zeroth-rank tensor, the red
3x3 block the first-rank tensor, and the blue 5x5 block the second-rank tensor.
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The rotation matrix in this rank-separated basis is now block diagonal and

consists of a 1x1 bock that rotates the isotropic component, a 3x3 block that rotates the

first-rank tensor, and a 5x5 block that rotates the second-rank tensor (see Fig. 2.1b).

2.1.4 Irreducible Spherical Tensors

The irreducible spherical tensors are a special representation of the rank-

separated basis discussed in the previous section. Because we use rotations, the

relevant symmetry group is the one of rotations in three-dimensional space, SO3. We

can describe a general Cartesian tensor of rank in terms of a symmetry-adapted

basis that belongs to the representations , , , , of the rotation group.

A spherical tensor of rank , , is a quantity with components which

transform according to the irreducible representation of the (full) rotation group.

We can write a spherical tensor of rank  as a vector with  components

[2.39]

that can be distinguished by their “magnetic quantum number” .

For a spherical tensor the rotation matrix (Fig. 2.2) is given by the Wigner

rotation matrix of rank  and the rotation of the spherical tensor can be written as

. [2.40]

R'˜ α β γ, ,( )

k

D0 D1 D2 … Dk
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S,

= .

S0,0

S1,-1
S1,0
S1,1
S2,-2
S2,-1
S2,0
S2,1
S2,2

Figure 2.2: Irreducible Spherical-Tensor Rotations
Irreducible spherical tensor are a special implementation of the rank-sorted basis of Eq. [2.38].
The rotation matrix is block diagonal and the elements are the Wigner rotation-matrix
elements.

,

S,
(new)

D
, α β γ, ,( )S,

(old)
=
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The Wigner rotation matrix can be obtained from the Cartesian rotation

matrix by the appropriate basis transformation. We can also formulate the

rotation of the spherical tensor for the  components as

. [2.41]

Here, the elements of the Wigner rotation matrix  are needed which are given by

. [2.42]

The reduced Wigner matrix elements are given by . The Wigner rotation

matrix elements can be calculated or can be found in tables for each rank . Note that

both, the and depend on the Euler angles of the rotation but

are just complex and real numbers, respectively, while the Wigner rotation operator

is a matrix. Analytical expressions for the Wigner rotation matrix elements for

, , and  can be found in the Appendix 12.2.

2.1.5 The Tensor Product

In order to build up higher-rank tensors, we need to know the irreducible

components of the product of two tensors. This is most easily achieved using

spherical tensors. The tensor product of two spherical tensors and of rank

and , respectively, can be expressed by irreducible tensors of the rotation group

 by

[2.43]

where the are the so called Racah or Clebsch-Gordan coefficients. The

Racah coefficient is related to the Wigner 3j symbols by

. [2.44]

This leads to the following expression for the tensor product of two spherical tensors
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. [2.45]

Explicit expressions for the Wigner 3j symbols can be calculated using analytical

expressions in a program like Mathematica or Matlab. They can also be found

tabulated in books about “angular momentum”.

One can calculate the product of two first-rank tensors as

[2.46]

with the elements  according to Eq. [2.45] given by

. [2.47]

2.1.6 Spatial Tensor

The Cartesian spatial tensor of rank one is a vector = ( , , ) in a

three-dimensional Euclidean space spanned by the basis { , , }. The Cartesian

second-rank spatial tensor  is characterized by a 3x3 matrix
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. [2.48]

The components of the first-rank spatial spherical tensor operator are given by

. [2.49]

Combining Eqs. [2.47] and [2.49] allows us to express the second-rank spherical

spatial tensor in terms of the elements of the Cartesian tensor of Eq. [2.48] as

. [2.50]

It is important to remember that all the elements of the spatial tensors are complex

numbers.

2.1.7 Spin-Tensor Operators

We can also express the spin operators not only as Cartesian spin operators but

also as spherical spin-tensor operators. The Cartesian one-spin tensor operator of rank

zero is the identity operator . The Cartesian one-spin tensor operators of
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rank one constitute a vector = ( , , ) in a three-dimensional space

spanned by the basis { , , }. For a spin with a spin-angular momentum of

, the rank 1 tensor is the highest rank that exists while for a spin with

higher-rank spin-tensor operators exist. This can also be seen from the fact that the

spin operators for a spin with can be described by the 2x2 Pauli matrixes of

Eq. [1.9]. A full basis is spanned by four basis operators which are given by the

zeroth-rank and the first-rank Cartesian spin-tensor operators. For a spin-1 particle,

the Pauli matrices are of dimensions 3x3 and one needs nine basis operators to span

the full space. Therefore, for a spin-1 nucleus zeroth-rank, first-rank, and second-rank

spin-tensor operators exist.

The spherical spin-tensor operators are important since they allow the

description of spin rotations in a simple way. The one-spin zeroth-rank and first-rank

spherical spin-tensor operators are given by

. [2.51]

For a spin-1/2 this is again a full basis that spans the Hilbert space while for spins

with  we need to include higher-rank spherical spin-tensor operators.

To generate the spherical spin-tensor operators in the spin space of two

coupled spins, we have to calculate the tensor product of the two one-spin spherical

tensor operators. For two spin-1/2 nuclei, the highest rank of the two-spin spherical

tensor operators is two. Using a slightly modified version of Eq. [2.45]

, [2.52]

we can calculate the nine components of the two-spin spin-tensor operators as

T̂
1( )

Îx〈 〉 Îy〈 〉 Îz〈 〉

ex ey ez

I 1 2⁄= I 1 2⁄>

I 1 2⁄=

T̂00
k( )

Êk=

T̂10
k( )

Îkz=

T̂11
k( ) 1–

2
------- Îk

+
=

T̂1 1–,
k( ) 1

2
------- Îk

-
=

I 1 2⁄>

T̂,m
k n,( )

1–( ),2 ,1– m+ 2, 1+
,1 ,2 ,

m1 m m1– m–
T̂,1m1

k( ) T̂,2,m m1–
n( )⊗

m1 ,1–=

,1

∑=
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[2.53]

[2.54]

. [2.55]

We can also write down the explicit matrix representation of these spherical spin-

tensor operators in the normal product basis of the Hilbert space

, [2.56]

[2.57]

and

[2.58]

T̂00
k n,( ) 1–

3
------- ÎkzÎnz

1
2
--- Îk

+ În
- 1

2
--- Îk

- În
++ +

1–

3
------- Îk În⋅( )= =
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k n,( ) 1–

2 2
---------- Îk

+
În

-
Îk

-
În
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–[ ]=
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2
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±
Înz ÎkzÎn

±
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k n,( ) 1

6
------- 3 ÎkzÎnz Îk În⋅( )–[ ]=
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k n,( ) 1

2
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Înz ÎkzÎn

±
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2
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±
În
±

[ ]⋅=

T00
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4 3
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Naturally, the two-spin tensor operators have to be expressed in the combined space

of the two spins which has a dimension of 4x4 and is created by the direct product of

the Pauli matrices.

2.2 Spherical-Tensor Notation Of Hamiltonians

We have already seen the Cartesian-tensor formulation for the Hamiltonians of

the important interactions in NMR in Chapter 2.1. In solid-state NMR and NMR

relaxation theory, the spherical notation of Hamiltonians is more often used since

rotations in spin space, rotations in real space, and rotations of the static magnetic

field can be expressed in a uniform formalism. If we use the spherical-tensor notation,

we have to express the Hamiltonian as the scalar product of the spatial spherical

tensor and the spin spherical-tensor operator as introduced in Eqs. [2.6]-[2.11]. We

will denote the spherical space tensors by and the spin-tensor operators by .

The spin-tensor operators are defined for spin-spin interactions by

[2.59]

and for interactions of the spin with the magnetic field by

[2.60]

The scalar product of spherical space and spin tensors leading to the scalar

Hamiltonian is given by

. [2.61]

The superscript runs over all the interactions present in the system. The rank is

limited to two in the basic Hamiltonian which we usually consider, i.e., all

interactions are of rank zero, rank one, or rank two. Higher-rank tensors can appear in

the basic spin Hamiltonian of nuclei with but there are only a few

A,
i( )

7̂,
i( )

Îk În⊗ 7̂,
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⋅
, 0=
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∑ 1–( )qA,q

i( )
7̂, q–,
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q ,–=

,
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experimental observations of such quantities. The generalized scalar product between

two tensors as defined above is equivalent to the tensor product of the two tensors

where we only take the ,  component of the resulting tensor

. [2.62]

In the rotating-frame representation, however, higher-rank tensors

components will appear in the Hamiltonian if the high-field approximation is not

fulfilled and second-order terms are considered. This is especially the case in

quadrupolar nuclei with large quadrupolar-coupling constants. Note that only if the

two spherical spin-tensor operators transform the same way under rotations, i.e., for a

homonuclear spin pair under non-selective pulses, for magnetically equivalent spins,

or if the two spherical spin-tensor operators refer to the same spin, the tensor

products are spin-tensor operators of rank and we can write for the tensor

components

. [2.63]

In all other cases, the are just a convenient short-hand notation for the tensor-

product of two first-rank tensor components as defined by Eq. [2.47]. In this case they

transform like the product of two independent first-rank tensors under rotations and

the  are given by

. [2.64]
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In the case of the interaction of a spin with a magnetic field, the index of the second

tensor is B instead of n.

The Hamiltonian of Eq. [2.61] is always written in the laboratory frame of

reference. It is, however, often convenient to express the spatial tensors in their

principal-axes system, i.e., in a basis where the symmetric part of the matrix

representation of the tensor is diagonal and fully described by the three values ,

, and . The anti-symmetric part of the tensor, i.e., the rank-one contribution, is

not diagonal in this basis and described by the values , , and . Instead of

using the Cartesian components, one often uses the isotropic average of the tensor

, [2.65]

the anisotropy of the tensor

, [2.66]

and the asymmetry of the tensor

. [2.67]

In this notation, the ordering of the principal components is very important. We use

the convention

. [2.68]

With this definition, the asymmetry is always positive and smaller than 1 and the

anisotropy  can be positive or negative.

The identification of the parameters for the zeroth-rank tensor components,

and for the second-rank tensor component, and , , and for the first-

rank tensor components for the various interactions discussed in Chapter 2.1 are

summarized in Table 2.1.

Using these conventions, the spatial spherical-tensor components in the

principal-axes system are defined as

axx

ayy azz

axy axz ayz

a 1
3
---Tr A{ }

axx ayy azz+ +

3
-----------------------------------= =

δ azz a–=

η
ayy axx–

δ
---------------------=

azz a– axx a– ayy a–≥ ≥

η

δ

a

δ η axy axz ayz
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. [2.69]

Note that in the PAS of the symmetric part of the tensor, only the anti-symmetric part

is off diagonal and, therefore,  for .

We can calculate the rotated spatial spherical-tensor components in the

laboratory frame by rotating the spherical space tensors from the principal-axis

system to the laboratory frame system by the transformation

Table 2.1: Parameters For The Spherical-Tensor Notation Of Hamiltonians

Interaction
rank 0 rank 2 rank 1

Zeeman
Hamiltonian 0 0 0 0 0

RF-field
Hamiltonian 0 0 0 0 0

chemical-shift
Hamiltonian

J-coupling
Hamiltonian 0 0 0 0

dipolar coupling
Hamiltonian 0 0 0 0 0

quadrupolar-coupling
Hamiltonian 0 0 0 0

a δ η axy axz ayz

γ–

γ–

γ kσ– γσzz–
σyy σxx–

σzz σ–
----------------------- γσxy– γσxz– γσyz–

2πJ azz

2
μ0γ kγn"

4πrkn
3

---------------------–

e2qQ
2I 2I 1–( )"
----------------------------

Vyy Vxx–

Vzz
-------------------------

ρ00 3– a=

ρ10
i–

2
------- axy ayx–( ) i 2axy–= =

ρ1 1±,
1–

2
------ azx axz–( ) i azy ayz–( )±( ) axz iayz±= =

ρ20
3
2
---δ=

ρ2 1±, 0=

ρ2 2±
1–

2
------δη=

aαβ aβα–= α β≠

ρ,
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. [2.70]

The tensor components can then be used to write down the Hamiltonian of Eq.

[2.61] and are given by

[2.71]

There is a further simplification which we often make in NMR. Usually we

assume that the Zeeman interaction is much larger than all the other interactions and

transform the spin-part of the Hamiltonian into a frame rotating with the Zeeman

frequency. This leads to a time dependence of all terms except the terms which

are invariant under a rotation about . The time-independent terms are often called

“secular” under the rotating-frame transformation. The secular rotating-frame

Hamiltonian is then given by

. [2.72]

In the case of a homonuclear spin system, i.e., if , we find

[2.73]

while in all other cases only the terms of the tensor product containing only

terms survive leading to
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. [2.74]

From Table 2.1 it becomes clear that only the interactions of a spin with a field

and the J coupling have an isotropic component. These are the only interactions that

can be observed in liquid-state NMR. Second-rank tensor contributions are found for

the chemical-shift, the J-coupling (almost always neglected as discussed in Chapter

1.10.3.2), the dipolar-coupling, and the quadrupolar-coupling Hamiltonian. Only the

chemical-shift Hamiltonian has a first-rank contribution that is not directly manifest

in the NMR spectrum. The symmetry properties of the Hamiltonians under a rotation

in real space, a rotation in spin space, and a rotation of the magnetic field are

summarized in Table 2.2.

7̂00
i( ) 1–

3
-------T̂10

k( )
T̂10

n( )
=

7̂10
i( )

0=

7̂20
i( ) 2

6
-------T̂10

k( )
T̂10

n( )
=

Table 2.2: Tensor-Rotation Properties of Hamiltonians

Interaction rank under
spin rotation

rank under
space rotation

rank under
B-field rotation

Zeeman
Hamiltonian 1 0 1

RF-field
Hamiltonian 1 0 1

chemical-shift
Hamiltonian 1 0, 1, 2 1

J-coupling
Hamiltonian

0, 2 (homonuclear)
0,1+1 (heteronuclear) 0, 2 0

dipolar coupling
Hamiltonian

2 (homonuclear)
1+1 (heteronuclear) 2 0

first-order
quadrupolar-coupling

Hamiltonian
2 2 0

second-order
quadrupolar-coupling

Hamiltonian
1, 3 0, 2, 4 0
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The high-field approximation is sometimes not a good approximation and

higher-order corrections have to be included in the rotating-frame Hamiltonian. The

second-order Hamiltonian for a second-rank interaction is given by

[2.75]

where is the Larmor frequency of spin . Since the second-order Hamiltonian

scales with the inverse of the Larmor frequency, its size will be reduced with

increasing static magnetic fields. The second-order corrections to the rotating-frame

Hamiltonian are especially important for quadrupolar nuclei with a large

quadrupole-coupling constant and for spins with a large chemical-shift tensor. For

this reason, it is often beneficial to measure quadrupolar nuclei at the highest fields

available. This will be discussed in more detail in Chapter 11.

2.3 Information Content of NMR Hamiltonians

The NMR interactions discussed in this Chapter provide different types of

information about the structure and the dynamic properties of the molecule. They can

either be manifest directly in a one-dimensional spectrum through the magnitude of

an interaction or indirectly through spectral features in two-dimensional correlation

experiments.

2.3.1 Structural Information

The chemical shift depends on the local electronic environment of the spin.

There is no unambiguous direct link from the chemical shift to structural parameters

but chemical shifts can be calculated with quantum-mechanical methods and used in

this way to obtain structural information. There is also empirical statistical

information about the dependence of the chemical shifts on the dihedral angles in

certain types of structural motifs, e.g., for the Cα or the CO atom in peptides and

proteins.

*̂
2( ) 1

ω0k
-------- A21

k( )A2 1–,
k( ) T̂21

k( )
T̂2 1–,

k( )
,[ ] 1

2
---A22

k( )A2 2–,
k( ) T̂22

k( )
T̂2 2–,

k( )
,[ ]+⎝ ⎠

⎛ ⎞=

ω0k k
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The J coupling depends also on the local electronic structure of the spin. It

provides information about chemical bonds and, therefore, the chemical structure of

the molecule. A more quantitative information is the correlation of the dihedral

angles with the magnitude of three-bond J couplings (Karplus equation) in various

structural motifs. They are best known for the correlation of 3J couplings to the

dihedral angles in peptides and proteins. The J couplings can also be calculated by

quantum-chemical methods and can in this way provide information about the local

structure.

The dipolar coupling provides a direct link to atomic distances in a molecule.

As can be seen from Eq. [1.144], the dipolar-coupling Hamiltonian is proportional to

. The observed splitting in the spectra of oriented or powder samples is,

therefore, a good measure for interatomic distances and can be used to determine

distances in molecules with a high precision.

The quadrupolar coupling depends also on the local electronic structure. It can

provide information about the local symmetry of the electronic environment.

Quadrupolar coupling can also be calculated quantum chemically and can in this way

provide information about the local structure of a molecule.

Tensor correlation experiments can be used to determine the relative

orientation of two anisotropic interactions. Since the orientation of the dipolar-

coupling tensor in the molecular frame is well defined, they are of particular interest

in such experiments. One can also use the correlation between two chemical-shift

tensors or the correlation of a dipolar-coupling tensor with a chemical-shift tensor if

the orientation of the chemical-shift tensors in the molecular-fixed frame is known.

The result of such tensor correlation experiments are dihedral angles that determine

the local structure of a molecule.

2.3.2 Dynamic Information

Dynamic processes can lead to an averaging of anisotropic interactions. The

time scale of the averaging process is often not directly accessible unless it is in an

1 rij
3⁄
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relaxation-active range. The amplitude of the averaging process is reflected in the

scaling factor of the anisotropic interactions and can be directly obtained from the line

shapes in solid-state NMR spectra.

2.3.3 Symmetry Properties

Given a certain symmetry, either static (e.g. crystal-site symmetry in a crystal)

or through a time-average of a “fast” motional process (e.g. isotropic motion of small

molecules in liquid solution), only certain spherical tensors may exist. As an example

let us consider the component of the chemical-shift tensor. In octahedral

symmetry we have for the Cartesian components . Therefore,

which requires that the component must vanish. Systematically, we find the

“allowed” components by group-theoretical arguments. Note that we only expect

contributions to the spectrum from the components that transform according to the

total symmetric group . Therefore, some types of interactions are completely

impossiblein an environment of a certain symmetry as one can see from Table 2.3.

A20

axx ayy azz= = δ 0=

A20

A1
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Table 2.3: Tensor Averaging Under Different Symmetries

Symmetry Possible Tensor Ranks

Tetragonal

D4 0 2 4 5 6 7 8 9 10

Tetrahedral

T 0 3 4 6 7 8 9 10

Octahedral

O 0 4 6 8 9 10

Icosahedral

I 0 6 10

Spherical

SO(3) 0
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3 Magic-Angle Spinning

Powder spectra in solid-state NMR contain a large amount of information. The

size and the orientation of the chemical-shielding tensors and the dipolar-coupling

tensors are contained in them, and they can give us information about the structure or

dynamics of a molecule. The main problem is, however, how to get this information

out of the spectrum. Due to the very broad lines we have severe overlap and cannot

easily extract this information.

The standard way of removing the powder broadening in solid-state NMR is

magic-angle sample spinning (Figure 3.1). We put the sample into a rotor and spin it

fast about an axis which is inclined by an angle of 54.74° to the static magnetic field.

The rotation about this axis removes the broadening generated by the second-rank

tensors and leads to a considerable sharpening of the lines. Here we assume that the

rotation is fast compared to the width of the line.

MAS rotors come in different sizes. The diameter of the rotor dictates the

maximum spinning frequency and the sample volume. Typical standard sizes are

4 mm rotors, which allow spinning frequencies up to about 15-18 kHz; 2.5 mm rotors,

which allow spinning frequencies up to 30-35 kHz; and 6-7 mm rotors, which allow

spinning frequencies of about 6-10 kHz. There are also experimental 1.8 mm and

θm 54.7°=

ωr

B0

Figure 3.1: Magic-Angle Spinning
Schematic drawing of an MAS rotor which is
inclined by an angle of 54.7° degrees with the
static magnetic field. This angle is often called the
“magic angle” because a rotation about this angle
leads to an averaging of all second-rank space
tensor contributions.
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1.3 mm MAS rotors, which allow spinning frequencies up to 50 kHz and 70 kHz,

respectively. Some companies also offer much larger rotors for very insensitive

samples that do not need high spinning frequencies.

Smaller rotors and, therefore, higher spinning frequencies are of particular

interest if we measure at high magnetic fields since the chemical-shift tensors scale

linearly with the . At a static magnetic field of 18.8 T (800 MHz proton resonance

frequency) a typical carbonyl tensor is in the order of 30 kHz. To obtain a spectrum

without any strong sidebands one has to spin faster than the width of the tensor,

which is only possible with a 2.5 mm size rotor. Secondly, the increase in field also

leads to a larger spread of the isotropic chemical shifts. If the spinning frequency

matches the isotropic chemical-shift difference of two dipolar coupled spins, we see a

broadening of the resonances due to an effect called rotational resonance. In a later

Chapter we will hear more about this method, which can be used to measure

distances between homonuclear dipolar coupled spins. To avoid this rotational-

resonance recoupling condition for uniformly labelled samples, it is best to spin faster

than the width of the spectrum. For a 18.8 T magnet this corresponds to a spinning

frequency of 35 kHz for a 13C spectrum. Lastly, it has been observed experimentally

that the line width in uniformly 13C labelled compounds decreases with increasing

spinning frequency.

3.1 Average Hamiltonian Treatment

In Chapter 4.1.2 we have seen that the rotating-frame Hamiltonian under

rotation about a single axis can be described according to Eq. [4.17] by

. [3.1]

For a second-rank spatial tensor we find, therefore

B0

B0

*̂ t( ) e
imωrtdm0

, θr( )A,m
(rot)

7̂,0

m ,–=

,

∑=



69
. [3.2]

If we now apply average Hamiltonian theory to the time-dependent Hamiltonian of

Eq. [3.2], we obtain in zeroth-order AHT

[3.3]

where the cycle time is given by . If we adjust the angle of the rotation

axis such that

[3.4]

vanishes and all spatial second-rank interactions are averaged out to zeroth

order. The angle where the reduced Wigner rotation matrix element becomes

zero is often called the “magic angle” indicated by the symbol . Isotropic

interactions (zeroth-rank tensors) are unaffected by magic-angle spinning because

[3.5]

while first-rank tensors are scaled according to

. [3.6]

As an example let us consider the chemical-shift Hamiltonian which consists of

an isotropic part and a spatial second-rank tensor part. The first three orders of the

average Hamiltonian are given by
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. [3.7]

Here, the zeroth-order average Hamiltonian is actually the full average Hamiltonian

and describes the time evolution of the system exactly if we restrict ourselves to

stroboscopic sampling. Such an interaction where is called an

heterogeneous interaction with respect to sample rotation. The stroboscopic

sampling, however, limits the spectral width to the spinning frequency. All spinning

side bands which can occur at multiples of the spinning frequency are folded back

onto the center band because the spectral width is equal to the spinning frequency.

As a second example let us consider a system of homonuclear dipolar-coupled

spins. For a single spin pair the time-dependent rotating-frame Hamiltonian is given

by Eq. [3.2]. For an arbitrary number of dipolar coupled spins we obtain a vanishing

zeroth-order average Hamiltonian if the sample is spun at the magic angle

. [3.8]

For the first-order average Hamiltonian we find a non-vanishing contribution if we

have multiple dipolar couplings
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[3.9]

since the terms of two spin pairs where one of the spins is the same do not

commute with each other. Therefore, we obtain contributions to the higher-order

average Hamiltonian and we call the interaction a homogeneous interaction with

respect to sample rotation. Since the higher-order terms are non zero, they will

contribute to the spectrum and lead, typically, to a broadening of the lines in the side-

band spectrum.

Figure 3.2a shows a numerical simulation for a dipolar-coupled two-spin

system under stroboscopic observation, i.e., all the side bands are folded back onto

the center band which is observed. The Hamiltonian for this system is heterogeneous

because it commutes with itself at all times and leads to a sharp spectrum. The

spectrum in Figure 3.2b shows a homonuclear dipolar-coupled three-spin system

which is homogeneous with respect to sample rotation. One can clearly see that the

lines are broadened due to higher-order average-Hamiltonian terms.

As a third example let us consider spinning a second-rank space tensor off the

magic angle. The zeroth-order average Hamiltonian in such a case is given by Eq. [3.3]

as

[3.10]

and we obtain a scaled static Hamiltonian. The function

[3.11]
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is called the second-order Legendre Polynomial. For = 0°we find a scaling factor of

1 and for = 90° we find a scaling factor of -1/2. The dependence of on

the angle is shown in Figure 3.3 for m = 0 to 4. From such a graph we can see that the

“magic angles” for tensors of different rank have different values and that the scaling

behavior has a different angle dependence. We find, for example, that for a rank-1

tensor a rotation about an axis inclined by 90° with the static magnetic field leads to a

full averaging of the tensor.

An example of an axially symmetric CSA tensor spinning at different rotation

angles is shown in Figure 3.4 under stroboscopic observation, i.e., all the side

bands are folded back onto the center band which is the only part of the spectrum that

Figure 3.2: Heterogeneous vs. Homogeneous Hamiltonians
a) Dipolar-coupled homonuclear two-spin system under MAS and stroboscopic observation
leading to a sharp line. The observable line width is due to exponential line broadening
applied during processing. b) Dipolar-coupled homonuclear three-spin system under MAS
and stroboscopic observation leading to a broadened spectrum. The dipolar couplings were
set to = 20 kHz, the spinning frequency was = 30 kHz and the angle
between the dipolar coupling tensors was  = 120°. Only part of the spectra is shown.
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is observed. One can clearly see that the shape of the tensor remains the same and

only the width is scaled by the second-order Legendre Polynomial . The

direction of the tensor is reversed when going through the magic angle reflecting the

sign change in the scaling factor.

3.2 Explicit Calculation of the Time Evolution Under MAS

To describe the time evolution between the sampling points given by the

stroboscopic sampling in order to get a correct description of the spectrum for non-

synchronized sampling, we have to take the explicit time dependence into account.

For the chemical-shift Hamiltonian, this is relatively simple because only a single spin

operator appears in the Hamiltonian and the Hamiltonian commutes with itself at all

times. We can, therefore, write

[3.12]

where is the instantaneous resonance frequency at time . For

simplicity of notation, we restrict the discussion to a single spin. If we would stop the

rotor at any given time , the resonance frequency of a crystallite with orientation

Figure 3.3: Legendre Polynomials
The value of the Legendre Polynomials as a function of
the rotation angle is shown for m =0 to 4. The values for are always
between -1 and 1. The zero crossing correspond to the “magic angle” of a
rank-m tensor.
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would be and the spectrum would be a single line at frequency

.

We can decompose the transition frequency into a time-independent and a

time-dependent part according to

[3.13]

and identify the time-independent part with the isotropic chemical shift

[3.14]

and the time-dependent part with the second-rank tensor contribution

. [3.15]
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Figure 3.4: CSA Tensor Under Rotation About a Single Axes
Axially symmetric chemical-shift tensor under single-axis rotation with the rotation axis
inclined by different angles with the static magnetic field. The tensor is scaled by the second-
order Legendre Polynomial . Note the different scales of the plots since the integral
over the line must be constant.
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Inserting Eq. xx into [3.15] leads to the following expression for the time-dependent

transition frequency

[3.16]

which can be expressed as a sum of four trigonometric functions

[3.17]

with

. [3.18]

The formal solution for the signal of a single crystallite under the Hamiltonian

of Eq. [3.12] is given by

[3.19]
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and the powder average is given by

. [3.20]

The phase of the exponential function can be separated into two parts in the same

way as the transition frequency

[3.21]

where

[3.22]

and

. [3.23]

Note that the accumulated phase is cyclic with a period of the sample

rotation , i.e., = . In addition, after each

full rotor period the time-dependent phase - = 0 and,

therefore, the FID is refocused for . We call this phenomenon a rotational echo

which is illustrated in Figure 3.5. At these time points, the time evolution of the echo

is only determined by the isotropic chemical shift according to

. [3.24]

This agrees with Eq. [3.7] where we have seen that the time evolution is only

determined by the isotropic chemical shift if the observation is stroboscopic with a

cycle time .
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In order to calculate the time evolution between the stroboscopic sampling

points we have to evaluate the expression

. [3.25]

The frequency-domain signal is given by the Fourier transformation of the time-

domain signal

. [3.26]

Figure 3.5: Simulation of the FID for a Powder Sample
a) FID and b) Fourier-transformed spectrum of a CSA tensor ( = 10 kHz, = 0) at an
MAS frequency of 200 Hz. One can clearly see the rotor echoes in the FID spaced by 5 ms
which corresponds to the inverse of the rotor frequency. In the spectrum we see side bands
spaced by the rotor frequency.
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Since the signal is cyclic with , we only have to consider the times between and

which will result in intensity only at multiples of . Therefore, we can rewrite the

Fourier transformation as

. [3.27]

Because the phase and appear always together, we can perform a variable

transformation in the Fourier transformation defined by and

 leading to

[3.28]

For a single crystallite the intensities of the side bands are in general complex

numbers leading to an arbitrary phase. Integrating over the powder angle  leads to

. [3.29]

This shows that all the sidebands in a powder are in phase (see Figure 3.6) because the

intensities are real and have the same sign as the center band. The full signal is the

convolution of the frequency-domain signal from the isotropic part of the
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Figure 3.6: MAS Side-Band Spectra for CSA Tensors.
Side-band spectra for CSA tensors ( = 10 kHz, a) = 0, b) = 0.5, and c) = 1)
under MAS for six different spinning frequencies: 200, 1000, 2000, 5000, 10000, and 20000 Hz.
The intensities are scaled such that the highest peak in each spectrum has the intensity 1.
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Hamiltonian with the signal from the anisotropic part. We, therefore, obtain a set of

side bands which is centered at the isotropic chemical shift, . The side-band

intensities can be expressed analytically as an infinite sum over Bessel functions

[3.30]

and evaluated numerically.

The side-band intensities in an MAS spectrum of a powder sample given by

[3.31]

depends exclusively on the spinning speed and on the anisotropy, , and

asymmetry, , of the tensor through the parameters , , , and . One can,

therefore, determine these tensor values from measured side-band intensities in an

MAS spectrum of a powder. Herzfeld and Berger (J. Chem. Phys, 73 (1980) 6021) have

calculated contour plots (Figure 3.7) of for as a

function of the two parameters and . From these plots, and can be

determined graphically. There are also computer programs available to fit these two

parameters to the side-band intensity.
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Figure 3.7: Herzfeld-Berger Contour Plot for Side-Band Intensities
This is the N = -1 contour plot for the relative side-band intensity used in a Herzfeld-Berger
analysis. The tensor is parametrized using the two variables and

.
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4 Recoupling Techniques Under MAS

4.1 Introduction

We have seen in Chapter 6 that in zeroth-order average Hamiltonian theory all

anisotropic interactions are averaged by magic-angle spinning. If we want to use any

of the anisotropic interaction during an MAS experiment we need to reintroduce the

anisotropic interactions under MAS by interfering with the averaging of the spatial

part through manipulations of the spin part. The most important application of such

recoupling techniques is the reintroduction of dipolar couplings under MAS for

homonuclear or heteronuclear polarization transfer. We have already seen one

example for such a recoupling of the heteronuclear dipolar coupling in Chapter 7.2

(Cross Polarization Under MAS) where the heteronuclear dipolar coupling was

recovered under MAS by adjusting the amplitude difference of the cw rf irradiation of

the I and S spins such that it matched or . A large number of such

recoupling sequences has been developed in solid-state NMR with different

properties and applications using various principles to prevent the total averaging of

the dipolar coupling under MAS. A second less important application is the

reintroduction of the chemical-shift tensor under MAS in order to measure the size

and the orientation of the CSA tensor.

Recoupling techniques utilize the constructive interference between rotations

in real space (magic-angle spinning) and rotations in spin space (rf irradiation) to

make certain parts of the system Hamiltonian time independent. In this way it is

possible to avoid the averaging of anisotropic interactions by MAS and design

Hamiltonians with the properties required by the experiment.

There are several classes of recoupling experiments: (i) experiments without rf

irradiation, (ii) experiments using discrete pulses, (iii) experiments using cw

irradiation, and (iv) experiments using phase-modulated rf irradiation. There is a

large number of experiments in each of these classes and we will discuss the

properties of some sequences in detail here.

ωr± 2ωr±
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Recoupling sequences can be classified according to different properties:

homonuclear and heteronuclear recoupling sequences, broadband and selective

recoupling sequences, or based on the principles they use to prevent the full

averaging of the dipolar coupling. We can distinguish basically four different

principles that are used for recoupling sequences: (i) Recoupling sequences without rf

irradiation of the recoupled spin. Examples for such sequences are proton-driven or

rf-driven spin diffusion and rotational resonance. (ii) Recoupling sequences that use

discrete pulses (delta-pulse limit) in order to reintroduce the dipolar coupling

Hamiltonian. Examples for such sequences are REDOR, RFDR, and DRAMA. (iii)

Recoupling sequences based on cw irradiation of the spin system. Examples for such

sequences are CP, HORROR, and R3. (iv) Recoupling sequences with continuous but

phase modulated rf irradiation. Examples of such sequences are C7, SPC5, and the

generalized C-type and R-type sequences. In this chapter we will discuss some

important representatives of these sequences and the principles they are based on.

4.2 Recoupling Sequences Without RF Irradiation

We have seen in Chapter 6 that in zeroth-order approximation MAS will

average out all anisotropic interactions. The CSA tensor and the heteronuclear

interaction are heterogeneous interactions and all higher orders of the average

Hamiltonian are also zero. The homonuclear interaction, however is a homogeneous

interaction and higher-order terms in the average Hamiltonian expansion are non

zero leading to a residual first-order homonuclear dipolar coupling under MAS. In

recoupling sequences without any rf irradiation we either have to rely on this residual

coupling or we have to utilize an interference effect between the spinning of the

sample and the internal spin-system Hamiltonian.
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4.2.1 Proton-Driven Spin Diffusion

4.2.1.1 Introduction

Proton-driven spin diffusion was one of the first experiments used for dipolar-

mediated polarization transfer under MAS. The experiment relies on the fact that

MAS does not fully average the homonuclear dipolar coupling Hamiltonian (see

Chapter 6.1) and we obtain a first-order average Hamiltonian which mediates

polarization transfer. The compensation for resonance offsets is provided by the

residual line broadening due to the incomplete averaging of the heteronuclear dipolar

couplings by MAS. The basic pulse sequence for proton-driven spin diffusion is

shown in Figure 4.1. At low spinning frequencies no rf irradiation is needed during

the mixing time while at higher spinning frequencies, irradiation of the protons at

the rotary-resonance ( ) or HORROR ( ) condition (see Chapter 4.4)

can speed up the polarization-transfer process significantly. Typical mixing times in

protonated organic solids are in the order of 10 ms for transfer via direct bonds up to

several 100 ms for long-range transfer.

Figure 4.1: Pulse Sequence for Proton-Driven Spin Diffusion
After initial cross polarization and the evolution time , the magnetization is stored along
the z direction during the mixing time . No proton decoupling is applied during the
mixing time in order to speed up the polarization transfer process. After the mixing time the
magnetization is put back into the x-y plane and detected during under proton decoupling.
During the mixing time, cw irradiation at the rotary-resonance or HORROR condition (see
Chapter 4.4) can be employed to increase the polarization transfer speed.
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4.2.1.2 Theoretical Description

If we consider a purely homonuclear dipolar Hamiltonian we obtain according

to Eq. [6.10] a first-order average Hamiltonian of the form

. [4.1]

Note that the differences since in

general which leads to a final first-order homonuclear dipolar

average Hamiltonian under MAS of

[4.2]

Such a three-spin Hamiltonian also promotes polarization transfer between the spins

and in a similar way as the normal zero-quantum dipolar-coupling Hamiltonian.

Figure 4.2 shows the time evolution under such a first-order average Hamiltonian in a

homonuclear dipolar-coupled three-spin system. One can clearly see that we obtain a

oscillatory polarization transfer in much the same way as it is obtained under a

regular dipolar coupling. The main difference to the case with a static dipolar

coupling is the much smaller size of the first-order average Hamiltonian especially at

higher MAS frequencies due to the scaling by . For a directly bonded C-C-C

three-spin system we find a transfer of the magnetization within roughly 10 ms at a

*̂D
1( ) A22

k ,,( )A2 2–,
k m,( ) A2 2–,

k ,,( )
– A22

k m,( ) 4 A2 1–,
k ,,( )A21

k m,( ) A21
k ,,( )A2 1–

k m,( )
–( )+

288– ωr
-------------------------------------------------------------------------------------------------------------------------------------------------------

k , m≠ ≠
∑=
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spinning frequency of 10 kHz (Figure 4.3) while at 30 kHz MAS frequency the

polarization transfer is much slower and the maximum transfer is only reached after

approximately 30 ms. For short times the first-order average Hamiltonian dominates

the time evolution which scales under this condition with . For longer times,

higher orders of the average Hamiltonian become also important and the scaling of

the time evolution will be more complicated.

The main problem associated with polarization transfer through the dipolar

coupling is the quenching of the polarization-transfer process by the differences in the

chemical shifts. Figure 4.4 shows the same simulations as in Fig. 4.3 but the chemical

shift of spin 2 was changed from on resonance to an off-resonance value of 1 kHz.

Even for such a small chemical shift, the polarization transfer is almost fully quenched

and we see only transfer of magnetization between spins 1 and 3. The simplest way to

eliminate the resonance offsets is by irradiating the spins with a strong cw rf field,
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Figure 4.2: Polarization-Transfer Dynamics in a Three-Spin System Under MAS
Polarization-transfer dynamics in a homonuclear dipolar-coupled three-spin system under
MAS with = , = , and = . The expectation values of the three spins
are plotted as  (blue),  (red), and  (green).
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effectively implementing the experiment in the rotating frame. This will also change

the structure of the effective Hamiltonian and lead, in the limit of the rf nutation

frequency much larger than the MAS frequency, to a scaling of the Hamiltonian by a

factor of 1/4. Instead of cw irradiation, more complicated pulse sequences like

WALTZ or DIPSI can be used that compensate resonance offsets better at lower rf-

field amplitudes. This experiment is known as rf-driven spin diffusion. Due to the

high rf-field amplitudes and the slower polarization-transfer dynamics this

experiment is not used very often.

In proton-driven spin diffusion the offset compensation is provided by the

residual line broadening of the carbons under MAS due to the dipolar couplings to

the protons and among the protons. As we will see in more detail in Chapter 8.1 when

we discuss heteronuclear spin decoupling, MAS alone will not fully average out the

heteronuclear dipolar coupling in the presence of a strong homonuclear dipolar-

coupled network of proton spins. At slower MAS frequencies the residual line
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Figure 4.3: Polarization-Transfer Dynamics in a Three-Spin System Under MAS
Polarization-transfer dynamics in a three-spin system calculated for a bond-angle of 109.5°, a
bond length of 1.5 Å using an initial state of = . The MAS frequency was 10 kHz and
30 kHz, respectively, and powder averaging was performed. All three spins were on
resonance.
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89
broadening of the 13C is large enough that we have a significant overlap of the

different resonance lines in the single-quantum spectrum. At higher MAS

frequencies, the overlap of the single-quantum resonances becomes small and the

spin-diffusion process, therefore, slow. In this case a broadening of the 13C single-

quantum lines can be achieved by irradiating the proton spins at the rotary-resonance

( or ) or the HORROR ( ) condition. In the first case the

heteronuclear dipolar coupling is reintroduced while in the latter case the

homonuclear dipolar coupling of the protons is reintroduced. These two processes

will be discussed in a different context in more detail in Chapter 4.4.

The size of the overlap of the single-quantum lines in the 13C spectrum will

influence the rate of the polarization-transfer process in addition to the dipolar

couplings involved in the process. In addition, the rate of the polarization transfer

between two spins and is not only influenced by the dipolar coupling but

also by all the dipolar couplings between spins and to all the other spins in the
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Figure 4.4: Polarization-Transfer Dynamics in a Three-Spin System Under MAS
Polarization-transfer dynamics in a three-spin system calculated for a bond-angle of 109.5°, a
bond length of 1.5 Å using an initial state of = . The MAS frequency was 10 kHz and
30 kHz, respectively, and powder averaging was performed. Spins 1 and 3 were on resonance
while spin 2 had a resonance offset of 1 kHz
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neighborhood (see Eq. [4.2]). Therefore, no simple correlation between the rate of the

polarization transfer and the dipolar coupling or the distance between two spins can

be given.

The polarization-transfer process in the proton-driven spin-diffusion

experiment can often be described approximately by a diffusion process although it is

strictly speaking a coherent polarization-transfer process. The same reasoning as to

why this makes sense apply as in the case of cross polarization (see Chapter 7.1.2).

4.2.1.3 Examples

Proton-driven spin diffusion is a simple, robust, and easy to implement

experiment. Therefore, it has found wide application in different fields of solid-state

NMR. On the negative side is the slow rate of polarization transfer as well as the low

efficiency of the polarization-transfer process. It is used in two-dimensional

correlation spectra as the polarization-transfer mechanism especially at lower MAS

frequencies. The mixing-time dependence is illustrated in Figure 4.5 for the example

of a triply-labelled 1,3,4-13C Gly-Gly sample (H2N-*CH2-*CO-NH-CH2-*COOH).

There is a fast cross-peak build up for the C3-C4 cross peak ( = 4300 Hz) with the

associated fast decrease in intensity of the corresponding diagonal peaks. The other

two cross peaks show a much slower build up due to the larger distance between the

spins ( = 280 Hz and = 130 Hz). The overall decay of the magnetization for

longer mixing times is due to relaxation effects.

Figure 4.6 shows a 2D 13C chemical-shift correlation spectrum of the protein

ubiquitin using proton-driven spin diffusion with a mixing time of 200 ms. The

spinning frequency was 40 kHz and rotary-resonance recoupling was used on the

protons to accelerate the polarization-transfer process. The protein was uniformly 13C

labelled. Such a spectrum can be used to assign the resonances in the backbone and in

the side chains of the protein.
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4.2.2 Rotational Resonance (R2)

4.2.2.1 Introduction

In rotational resonance or “rotor-driven” spin diffusion the spinning frequency

of the MAS rotor is adjusted such that the isotropic chemical-shift difference between

two spins is an integer multiple of the rotor frequency, i.e.,

. [4.3]

Under this condition one observes a broadening of the lines in the 1D spectrum as can

be seen in Figure 4.7. This broadening is due to a partial reintroduction of the

τm [ms]

I/I
0

Figure 4.5: Integrated Intensities in a Spin Diffusion Experiment
Time dependence of the diagonal and cross-peak intensity in triply-labelled 1,3,4-13C Gly-Gly
sample (H2N-*CH2-*CO-NH-CH2-*COOH) as a function of the mixing time in a proton-
driven spin-diffusion experiment at 7 kHz MAS frequency.
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homonuclear dipolar coupling if the rotational-resonance condition of Eq. [4.3] is

fulfilled. Such line broadening is usually unwanted since they reduce the resolution of

the spectrum. One can, however, use rotational-resonance recoupling as a selective

polarization-transfer method since only spins which fulfill the rotational-resonance

condition will experience a homonuclear dipolar coupling. In the presence of

chemical-shielding tensors one can also observe rotational-resonance recoupling for

matching conditions with . They are usually weaker than the

rotational-resonance conditions.

Figure 4.6: Proton-Driven Spin Diffusion Spectrum of Ubiquitin
Two-dimensional 13C chemical-shift correlation spectrum using proton-driven spin diffusion
with a mixing time of = 200 ms on the uniformly labelled protein ubiquitin. The MAS
frequency was 40 kHz and rotary-resonance recoupling was used during the mixing time.
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Figure 4.7: Rotational-Resonance Line Broadening
If the isotropic chemical-shift difference matches an integer multiple of the spinning
frequency, line broadening is observed in homonuclear dipolar-coupled spin systems due to a
reintroduction of the dipolar coupling through rotational resonance.
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As a polarization-transfer method to determine the size of dipolar couplings,

the rotational-resonance experiment is usually applied in a one-dimensional

experiment to doubly labelled compounds as shown in Figure 4.8. After an initial

cross-polarization period, one of the two resonances is inverted by a selective pulse or

a DANTE pulse train. The initial density operator evolves then under

the recoupled homonuclear dipolar coupling for a time under proton decoupling.

Since there is no radio-frequency irradiation on the S spins during this time, the

assumption of an isolated homonuclear S-spin pair is a good approximation and we

can ignore the proton spins. We detect a series of normal 1D spectra under

decoupling as a function of the mixing time . The initial density operator will

evolve under the homonuclear dipolar coupling and leads to a time evolution of the

difference magnetization which is equivalent to a polarization-transfer process. One

can also carry out the rotational-resonance experiment in a two-dimensional

correlation experiment where the cross-peak intensity is a measure for the amount of

transferred polarization. This is only necessary if rotational resonance is applied in

fully labelled samples in order to achieve the required spectral resolution.

Figure 4.8: Pulse Sequence for Rotational-Resonance Polarization Transfer
After initial cross polarization, one of the two spins is inverted by a DANTE pulse sequence.
The magnetization evolves then under the rotational-resonance recoupled dipolar
Hamiltonian during which is varied in a set of experiments. The difference magnetization
is then plotted as a function of time.
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4.2.2.2 Average-Hamiltonian Description in the Interaction Frame

If we assume that we have a doubly 13C-labelled compound and good proton

decoupling, the Hamiltonian for the homonuclear dipolar-coupled two-spin system is

given by

[4.4]

and the initial density operator in the rotational-resonance experiment is defined as

. [4.5]

We can write this Hamiltonian and the density operator as a sum of two commuting

subspaces, the double-quantum and the zero-quantum subspace

[4.6]

with

[4.7]

and

. [4.8]

The problem is now very similar to the problem of cross-polarization (Chapter

7.1.1.1). There will be no evolution in the double-quantum subspace and we only have

to calculate the time evolution of the density operator in the zero-quantum subspace.

For rare spins the dominant terms in the Hamiltonian is the chemical-shift term since

the couplings are typically small due to the low gyromagnetic ratio. We transform the

Hamiltonian of Eq. [4.7] into an interaction frame with the difference of the isotropic

chemical shifts
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[4.9]

leading to an interaction-frame zero-quantum Hamiltonian of

[4.10]

where we have neglected the term proportional to the identity operator. Expanding

the time-dependent dipolar coupling as

[4.11]

leads to an interaction-frame Hamiltonian of

[4.12]

which has non vanishing terms in zeroth-order average Hamiltonian theory if the

condition

[4.13]

with is fulfilled. In this case we obtain a zeroth-order average

Hamiltonian of

. [4.14]

This corresponds to a nutation of the initial density operator about an axis in the

x-y plane where the nutation frequency depends on the Euler angle and the phase

of the nutation axis on the Euler angle . The angle represents a rotation of the

Hamiltonian about the z axis which has no influence on the polarization transfer and

can be neglected. For the rotational-resonance condition this leads to the

Hamiltonian
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-

+[ ]=

1–
2

------ dm0
2 θm( ) d0m

2 β 1 2,( )
( ) δD

1 2,( ) Ŝx
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. [4.15]

The time evolution of the difference magnetization under such a

Hamiltonian is shown in Figure 4.9. We see an oscillation of the difference

magnetization which dephases due to the orientation-dependence of the oscillation

frequency. This behavior is basically the same as the one we have seen in Hartmann-

Hahn polarization transfer under MAS (see Figure 7.11 and Chapter 7.2.1) because the

average Hamiltonian has the same structure.

The off resonance behavior in rotational resonance is also very similar to the

one in Hartmann-Hahn cross polarization under MAS. The average Hamiltonian for

the  rotational-resonance condition has the form
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Δ

=
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Figure 4.9: Time Evolution of Difference Magnetization at Rotational Resonance
Time evolution of the difference magnetization as a function of the mixing time

scaled by the anisotropy of the dipolar coupling. The dephasing due to the orientation-
dependent oscillation frequency leads to a quasi-equilibrium value of the difference
magnetization of zero.
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[4.16]

leading to an increase of the oscillation frequency and a reduced amplitude of the

oscillation as we have seen in the case of Hartmann-Hahn cross polarization. The

width of the matching condition is a described by a Lorentzian line with a width

proportional to . Figure 4.10 shows a simulation for the time evolution of the

difference magnetization for a mismatch of where the offset

in the quasi-equilibrium value is clearly visible. For a one-bond 13C coupling with

≈ 4.5 kHz this corresponds to a mismatch of about 90 Hz. Off-match

conditions are mainly arising from a distribution of the isotropic chemical shifts in a

sample since the theoretical matching condition can be measured with high accuracy
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Figure 4.10: Time Evolution of Difference Magnetization at Rotational Resonance
Time evolution of the difference magnetization under mismatch conditions
with as a function of the mixing time scaled by the anisotropy of
the dipolar coupling. The dephasing due to the orientation-dependent oscillation frequency
leads to a quasi-equilibrium value of the difference magnetization of zero.
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and the spinning frequency of the sample can often be controlled to within a few Hz.

Such a distribution of isotropic chemical shifts leads to a situation where only some of

the spins are on the exact rotational-resonance condition while others are

mismatched. This partial mismatch leads mainly to a non zero quasi-equilibrium

value for the difference magnetization. Such effects have to be taken into account if

one wants to extract quantitative distances from rotational-resonance polarization-

transfer curves.

The description so far does not take into account relaxation effects which lead

to a decay of the polarization during the mixing time. Such effects are very important

and are one of the main limiting points for the application of rotational resonance in

real spin systems. Since our problem can be described by a fictitious spin-1/2 system,

we can describe the relaxation in terms of classical Bloch equations (in the usual

rotating frame and not in the interaction frame!)

[4.17]

where is the relaxation-rate constant for the zero-quantum relaxation, while

is the rate constant for the longitudinal relaxation. Typically, is much longer

than and neglected in the calculations. Here we have replaced the time-

independent isotropic chemical-shift difference by the time-dependent

difference of the full chemical shifts . This equation is usually used to

extract distances from rotational-resonance magnetization exchange curves

by fitting the distance between the two spins, the zero-quantum relaxation rate

constant, and possibly, a distribution of isotropic chemical shifts to the experimental

data.

One can also implement the rotational-resonance experiment in an adiabatic

fashion. The slowly changing Hamiltonian is in this case given by
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Ŝy
Δ

〈 〉 t( )

Ŝz
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[4.18]

which has the same basic structure as the Hamiltonian in Eq. [7.29] which described

the adiabatic Hartmann-Hahn cross-polarization process. If we again start with an

initial density operator proportional to the initial Hamiltonian we can

obtain full polarization transfer with . The problem of this method is an

experimental one. It is experimentally not easy to implement such sweeps of the rotor

speed because one has to speed up or slow down the rotor with a high acceleration to

minimize loss of magnetization due to relaxation effects. In addition one cannot

control the profile of the rotor frequency sweep and in practise only almost linear

ramps have been implemented.

One can also carry out the rotational-resonance experiment in a tilted frame

where we have an additional (small) radio-frequency field present (rotational-

resonance tickling). The Hamiltonian in such a case is given by

. [4.19]

We can transform the Hamiltonian into a frame of reference where the effective fields

are along the z-axis by a rotation of each spin about with an angle

. The effective fields are then given by . We

now have to match the difference or the sum of the effective chemical shifts by an

integer multiple of the MAS frequency depending on the carrier frequency. If the

carrier frequency is outside the chemical-shift range ( and have the same

sign) we have to match the difference of the effective fields. If the carrier frequency is

in the center between the two chemical shifts ( and have opposite signs), we

have to match the sum of the effective fields. This behavior is illustrated in Figure 4.11

which shows the effective fields for the two cases. The Hamiltonian in this tilted

frame is given by
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. [4.20]

One can now transform this Hamiltonian in the tilted frame into an interaction frame

by the difference or sum of the effective chemical shifts depending on the relative sign

of the isotropic chemical shifts. The situation is now more complicated because we

cannot separate the zero-quantum and the double-quantum subspace anymore. One

finds, however, that there is also a recoupling of the time-dependent dipolar

Hamiltonian if the condition

[4.21]

is fulfilled. There are three advantages of the rotational-resonance tickling experiment

over the normal rotational-resonance experiment: (i) One can turn on and off the

Figure 4.11: Rotational Resonance in the Tilted Frame
Effective-field directions in the tilted frame of reference for the rotational-resonance tickling
experiment. In the case a) the chemical shifts have opposite signs while in case b) the signs of
the chemical shifts are the same.
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rotational-resonance matching during an experiment by simply changing the radio-

frequency field. This allows us to have high-resolution spectra during the acquisition

time while polarization transfer happens during the mixing time. (ii) One can

implement an adiabatic rotational-resonance polarization-transfer experiment

without having to change the rotor spinning frequency. One simply changes the rf

amplitude in a suitable way in order to obtain an adiabatic sweep through the

rotational-resonance condition in the tilted frame of reference. (iii) The chemical-shift

range in which polarization transfer can occur is larger than in the standard

rotational-resonance experiment but the range can be controlled by the amplitude of

the rf field. This allows the implementation of band-selective polarization transfer.

4.2.2.3 Example

Figure 4.12 shows some experimental spectra for rotational-resonance spectra

recorded at different mixing times. After the initial cross-polarization period, the C’

carbon was selectively inverted and the difference magnetization evolved under the

m=1 rotational-resonance condition. One can see quite well the line broadening

induced by the recoupled dipolar coupling on the C’ and Cβ carbon. The

magnetization can be measured by integrating the two lines and calculating the

difference magnetization. A plot of the experimental difference magnetization as a

function of the mixing time is shown in Figure 4.13 (circles) for the C’-Cα and the C’-

Cγ spin pairs. The C’-Cα spin pair is directly bond ( = 1.54 Å based on neutron

diffraction data) and we see strong oscillations of the difference magnetization as one

would expect for such a case. The C’-Cγ spin pair has only a long-range coupling (

= 3.09 Å based on neutron diffraction data) and we see only strongly damped slow

oscillations. One can fit the experimental data with simulations obtained from Eq.

[4.17] and determine the dipolar coupling and the distance between the two spins.

The best fit to the experimental data of a modified version of Eq. [4.17] is shown in

Figure 4.13 as a solid line. The parameters obtained were = 1.56 Å for the C’-Cα

spin pair and = 2.93 Å for the C’-Cγ spin pair. The precision of the obtained

distance depends on the quality of the data (signal-to-noise ratio) and on the distance

itself. For larger distances the oscillations are heavily damped and the distance and

rCC

rCC

rCC

rCC
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the zero-quantum relaxation-rate constant become highly correlated. Since there is no

simple way of measuring experimentally, it has to be estimated from transverse

one-quantum relaxation times or fitted as a free parameter. Typically, one can obtain

distances for 13C spins up to 4 Å with a precision of about 10%. A detailed analysis of

the error surface of the fit and the correlation between the fitted parameters is very

important.

Figure 4.12: Experimental Rotational-Resonance Spectra
Experimental rotational-resonance spectra of threonine where the spinning frequency was
adjusted to the isotropic chemical-shift difference between the C’ and the Cβ carbon.
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Figure 4.13: Experimental Rotational-Resonance Magnetization-Exchange Curves
Experimental (circles) rotational-resonance magnetization-exchange curves and best fit (solid
lines) in threonine: a) for C’-Cα and b) for C’-Cγ.
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Ŝ 2
z

–
〈

〉
t(
)

a)

b)



105
4.3 Recoupling Sequences With Discrete Pulses

In the last Chapter we have discussed sequences which do not require rf

irradiation on the spins that are recoupled. The next level in complication are

sequences which use discrete pulses in order to prevent the full averaging of the

dipolar coupling under MAS. Such sequences can best be described by a toggling

frame approach where we assume that the pulses are infinitely short (delta-pulse

approximation) and the coordinate system is reoriented instantaneously. There are

quite a few recoupling sequences in this category and many date back to the early

days of dipolar recoupling under MAS.

4.3.1 Radio-Frequency Driven Recoupling (RFDR)

4.3.1.1 Introduction

Radio-frequency driven recoupling (RFDR) is a homonuclear dipolar-

recoupling technique where a pulse is applied in the center of a rotor period to

prevent the full averaging of the dipolar coupling through MAS. The basic pulse

sequence for a two-dimensional correlation spectrum is shown in Figure 4.14. RFDR

is a broadband recoupling method but the efficiency depends strongly on the

isotropic chemical-shift difference which is equivalent to the distance of the cross

peak from the diagonal of the spectrum. One can view the RFDR experiment as a

rotational-resonance experiment where the strong dependence of the recoupling

efficiency on the isotropic chemical-shift difference has been broadened by partially

refocusing the chemical shifts.

4.3.1.2 Theoretical Description

The time-dependent Hamiltonian in RFDR is the same as in rotational-

resonance recoupling and we can again write the Hamiltonian as the sum of two

commuting subspaces, the zero-quantum and the double-quantum subspace (see Eqs.

π
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[4.4]-[4.8]. Only the zero-quantum subspace is important for the RFDR experiment

and the Hamiltonian is given by Eq. [4.7] as

. [4.22]

The 180° pulse per rotor period can be described by an interaction-frame

transformation where the frame of reference is rotated by 180° around the x axis. The

chemical-shift Hamiltonian is inverted by this interaction-frame transformation while

the dipolar-coupling Hamiltonian is left unchanged. This Hamiltonian is only cyclic

after two rotor periods. In this interaction frame our Hamiltonian is defined piece

wise and we find

. [4.23]

We now transform the Hamiltonian into a second interaction frame with the MAS

frequency and obtain in the second interaction frame again a piece-wise defined

Hamiltonian

CP

CP

decoupling

τr τr

τm=2n τr

n

t1 t2τcp

ππ/2 π π/2

π/2

Figure 4.14: Pulse Sequence for RFDR Experiment
RFDR sequence for the broad-band recoupling of homonuclear dipolar couplings. After cross
polarization, the magnetization is stored along the z axis and the averaging of the
homonuclear dipolar couplings is prevented by a rotor-synchronized  pulse per rotor cycle.π
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Δ
ωSS

1 2,( ) t( )Ŝx
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[4.24]

which we can integrate after substituting

. [4.25]

Note that the time for the integration of each of the three intervals starts always at

zero. A lengthy but straightforward calculation leads to the zeroth-order average

Hamiltonian of

. [4.26]

The Hamiltonian in the full Hilbert space is then given by

[4.27]

leading for an initial density operator of to a time evolution of the density

operator of

. [4.28]

The transfer efficiency depends strongly on the isotropic chemical-shift difference

because the effective dipolar-coupling frequency depends not only

on the Euler angle but also on the ratio . The dependence of on the

two parameters is plotted in Figure 4.15. One can see that the effective dipolar-

coupling frequencies are largest around the broadened ( ) and

( ) rotational-resonance conditions. For large isotropic

chemical-shift differences ( the effective dipolar-coupling frequency
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Ŝ2

+
+[ ]=

ρ̂0 Ŝ1z=
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becomes quite small and oscillates fast. For small isotropic chemical-shift differences

one finds decrease of the effective dipolar-coupling frequency towards

zero.

The theoretical description of the RFDR experiment was done in the limit of

pulses, i.e., pulses which correspond to instantaneous rotations. The effects of real

pulses which is especially important at high MAS frequencies can be included in the

theoretical treatment. Their effects can be minimized by using an appropriate phase

cycle on the train of 180° pulses. If the rf-field to MAS frequency ratio becomes 1/2,

one can describe the RFDR experiment with the usual phase cycle on the 180 °pulses

as a  sequence as described in Chapter 4.5.1.
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Figure 4.15: Effective Dipolar Coupling Frequency in the RFDR Experiment
Effective dipolar coupling in the RFDR experiment as a function of the isotropic chemical-
shift difference for several values of the Euler angle . One can clearly see that the
effective coupling becomes quite small for large offsets.
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4.3.1.3 Examples

Two-dimensional chemical-shift spectra using RFDR as a mixing sequence

have mostly been used to assign resonances based on the coupling pattern. Directly

bond carbons have the strongest couplings and this can be used to determine the

resonance assignment of neighboring atoms. Figure 4.16 shows an example of RFDR

applied to fully 13C labelled bacteriochlorophyll c in order to obtain a homonuclear

correlation spectrum. Some of the cross peaks which allow the assignment of directly

bond carbons are indicated by their number in the spectra. The numbering of the

bacteriochlorophyll c is shown in Figure 4.16 C and D. The spectra in A and B were

recorded at a relatively low MAS frequency of 8 kHz which explains the strong side

diagonals in the spectra. The spectrum in E was recorded with an MAS frequency of

15 kHz and at a higher static magnetic field and shows significantly weaker side

bands. In this case the assignment of the resonances was used to determine the

change in chemical shift relative to the chemical shift of bacteriochlorophyll c in

solution. These chemical-shift differences were used to develop a stacking model of

the bacteriochlorophyll c in chlorosomes.

The strong side diagonals in the spectra are experimental artifacts which

appear in phase-sensitive two-dimensional MAS spectra with polarization transfer if

the acquisition is not properly synchronized with the MAS rotation. They can be

avoided by recording two data sets where either the mixing time or the t1 time plus

the mixing time is synchronized with the sample rotation and the correct coherence

selection by phase cycling is applied.

4.3.2 REDOR

4.3.2.1 Introduction

Rotational echo double resonance (REDOR) is a heteronuclear recoupling

method where the averaging of the heteronuclear dipolar coupling is prevented by

180° pulses which are spaced by half a rotor period. The basic pulse sequence is
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Figure 4.16: Application of RFDR to Resonance Assignment in Chlorophyll
B.-J. van Rossum, G.J. Boender, F.M. Mulder, J. Raap, T.S. Balaban, A. Holzwarth, K. Schaffner,
S. Prytulla, H. Oschkinat, H.J.M. de Groot “Multidimensional CP-MAS 13C NMR of
uniformly enriched chlorophyll”, Spectrochimica Acta Part A 54 (1998) 1167 1176.

Contour plots of 2-D MAS dipolar
correlation NMR spectra of uniformly
13C labeled chlorosomes (A), and 13C
labeled bacteriochlorophyll c
aggregates (B), recorded in a
magnetic field of 9.4 T. The spinning
speed was 8. kHz and a polarization
transfer time of 1 ms was used. The
lines indicate sequences of nearest
neighbor correlations. The
assignments of correlations (x:y) on
the plot correspond with the
numbering of the bacteriochlorophyll

Numbering of the carbon atoms in
bacteriochlorophyll c. Visual representation of
the aggregation shifts Δσi=σliq-σi. The two
components shown in part E by the solid and
dashed lines are indicated separately in (C) and

(E) Contour plot of a 2-D MAS 13C 13C dipolar
correlation NMR spectrum of uniformly 13C
enriched chlorosomes collected in a magnetic
field of 14.1 T. The spectrum was recorded with
a spinning speed of 15 kHz and with a
polarization transfer time of 1 ms. The solid and
dashed lines indicate the correlation networks
4-5-6-7-71 for the two components.

C D

E
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shown in Figure 4.17 but there are many variations which lead, in principle, to the

same result. The REDOR pulse sequence is a triple-resonance experiment. After initial

cross polarization from the protons to the carbons, the magnetization evolves under

the influence of the recoupled heteronuclear dipolar coupling leading to a partial

dephasing of the carbon magnetization. The isotropic chemical shift of the carbons is

refocused by the central 180° pulse on the carbons. The carbon signal is then

measured as a function of the rotor periods. The experiment is usually carried out as a

difference experiment to eliminate the influence of relaxation effects on the dipolar-

coupling determination. The intensity of the carbon signal in the dephased

experiment as described before is called S. The control experiment where all the

pulses on the nitrogen channel are eliminated and no dephasing happens is called S0.

The REDOR curve is a plot of

[4.29]

0 1 2 3 4 5 6 7 8

1H

13C

15N

decoupling

t/τr

π/2

Figure 4.17: Pulse Sequence for the REDOR Experiment
REDOR pulse sequence for the determination of dipolar couplings between 13C and 15N.
Initially 13C polarization is generated by cross polarization from the protons. During the
following evolution period pulses are used to prevent the averaging of the heteronuclear
dipolar coupling. In a reference experiment, all the 15N pulses are left out to obtain the non-
dephased spectrum.
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as a function of the mixing time which can then be fitted to the theoretical REDOR

curve. There is also a REDOR transform which directly converts the measured

REDOR curve into a dipolar coupling or a distance.

4.3.2.2 Theoretical Description

We assume a heteronuclear two-spin system with a time-dependent

Hamiltonian due to MAS of

. [4.30]

Here, the I spin is the passive (15N) spin while the S spin is the active (13C) detected

spin. The basic building block of the REDOR pulse sequence is shown in Figure 4.18.

There are two 180° pulses per rotor cycle spaced by half a rotor cycle. We can view the

180° pulses as an interaction frame transformation which is described by the Wigner

rotation matrix elements acting on the S-spin space. The time-

dependent Hamiltonian in the interaction frame is defined piece wise

[4.31]

with

*̂ t( ) ωI t( ) Îz ωS t( )Ŝz+ ωIS t( )2 ÎzŜz+=

t/τrn n+1/2 n+1
Figure 4.18: Basic Building Block in the REDOR Experiment
Basic building block for a single rotor period for the REDOR sequence. Such a pulse sequence
recouples the heteronuclear dipolar coupling while the isotropic J coupling and the chemical
shift on the I spin are averaged out.
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, [4.32]

, [4.33]

and

. [4.34]

To calculate the zeroth-order average Hamiltonian we have to integrate the time-

dependent interaction-frame Hamiltonian of Eq. [4.31] over a full rotor period

. [4.35]

There are some obvious simplifications that we can make:

• The anisotropic chemical-shift tensor of the S spin is averaged out since the

integration is over a full rotor cycle.

• The isotropic chemical shift of the S spin is not averaged out over one rotor period.

• The isotropic chemical shift of the I spin is refocused by the central  pulse.

• The isotropic heteronuclear J coupling is refocused by the central  pulse.

• The terms of the chemical-shift tensor of the I spin as well as the

heteronuclear dipolar coupling are averaged over half a rotor cycle.
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This leaves us with the isotropic chemical shift of the S spin and the terms of

the chemical-shift tensor of the I spin and the heteronuclear dipolar coupling tensor in

the zeroth-order average Hamiltonian

. [4.36]

Using the relation

[4.37]

we obtain after some calculations and assuming that the chemical-shift tensor is

axially symmetric

. [4.38]

Over the full REDOR sequence, the isotropic chemical shift of the S spin is also

averaged by the 180° pulse on the S spins. The chemical-shift on the I spins is not

important since it commutes with the Hamiltonian at all times. We end, therefore up

with an average REDOR Hamiltonian of the form

. [4.39]
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If we assume ideal pulses and have no homonuclear dipolar coupling, the zeroth-

order average Hamiltonian is the exact REDOR Hamiltonian. In the presence of

homonuclear dipolar couplings the situation becomes more complicated because the

time-dependent interaction-frame Hamiltonian does no longer commute with itself.

The time evolution of the initial density operator under the REDOR

Hamiltonian can be calculated easily and we obtain the REODR signal as

. [4.40]

For the reference experiment we eliminate the pulses on the I spins and obtain

an average Hamiltonian of

, [4.41]

i.e., a full refocusing of all the interactions by the rotor and the central 180° pulse on

the S spins. With this information we can now calculate the REDOR curve

[4.42]

as a generalized function of which is shown in Figure 4.19. Such a buildup is

typical for the REDOR experiment and can be used to fit the heteronuclear dipolar-

coupling constant to the experimental data. In this way one can obtain relatively

precise distances between heteronuclear spins in selectively labelled systems.

The effects of real pulses, i.e., finite pulse length which are not negligible

compared to the rotor period can be included in the treatment. This is especially

important for REDOR under fast MAS since the rotor period can become quite short

under this condition. In the limiting case where the ratio of rf-field strength and pulse

length approaches one, the REDOR experiment with the usual phase cycle can be

described as an experiment in the context of Chapter 4.5.1. In multi-spin systems,

the influence of several couplings have to be taken into account. This problem has

been solved analytically but is beyond the scope of this lecture.
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The REDOR recoupling method can also be used in a polarization transfer

method called TEDOR (transferred echo double resonance). The basic TEDOR pulse

sequence shown in Figure 4.20 is based on the INEPT principle. The initial density

operator is given by which evolves under the recoupled heteronuclear

dipolar coupling  leading to a density operator at time  of

. [4.43]

The two 90° pulses in the center of the sequence convert the anti-phase S-spin

magnetization into anti-phase I-spin magnetization which then evolves again under

recoupled heteronuclear dipolar coupling refocusing the anti-phase magnetization

into in-phase I-spin magnetization leading to a density operator before the start of

detection of

Figure 4.19: Theoretical REDOR Curve
Calculated REDOR curve as a function of the universal parameter
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. [4.44]

The final detectable signal in an ideal two-spin system is, therefore, given by

[4.45]

which is plotted in Figure 4.21. The maximum polarization transfer is about 52% of

the initial S-spin polarization if we assume that .

In multi-spin systems the polarization-transfer dynamics is more complicated

and the best polarization transfer is not necessarily reached for equal length

dephasing and refocusing times. In addition, homonuclear dipolar couplings as well

as relaxation effects lead to a dephasing of the magnetization which reduces the

polarization-transfer efficiency.

Figure 4.20: Pulse Sequence for the TEDOR Experiment
The TEDOR experiment is based on the INEPT polarization-transfer principle but uses the
dipolar coupling which is reintroduced by two REDOR sequences instead of the isotropic J
coupling.
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4.3.2.3 Examples

An experimental example of a REDOR curve measured on a model substance

is shown in Figure 4.22. The REDOR curve was measured on 5% labelled 1-13C-15N-

glycine by two different detection methods. The data show the typical features of the

theoretical REDOR curve as it has been shown in Figure 4.19. This curve could be

used to fit the experimental data and obtain the distance between the two atoms. In

this example the error bars are quite small due to the good signal-to-noise ratio one

can achieve in measurements on such small molecules.

The following two paragraphs are copied with modifications from: John J.

Balbach, Jun Yang, David P. Weliky, Peter J. Steinbach, Vitali Tugarinov, Jacob

Anglister, and Robert Tycko “Probing hydrogen bonds in the antibody-bound HIV-1

Figure 4.21: Polarization-Transfer Efficiency in the TEDOR Experiment
Plot of the transferred polarization in a TEDOR experiment with as a function of the
recoupling time . The maximum polarization transfer to the I spin is about 52% of the
initial S-spin polarization.
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gp120 V3 loop by solid state NMR REDOR measurements”, Journal of Biomolecular

NMR 16, 313-327 (2000).

“In the second example, a 17 amino-acid residue peptide, MB(i+4)EK with the

sequence Ac-AEAAAKEAAAKEAAAKANH2, with Ac and NH2 representing N-

terminal acetylation and C-terminal amidation. This peptide is known to have a high

helix content in solution and also in frozen solution of glycerol/water below the

glass-transition temperature. The peptide is labelled with 15N at the amide nitrogen of

Ala8 and with 13C at the carbonyl carbons of Ala4 and Ala10. Assuming an a-helical

conformation, the Ala8-Ala4 and Ala8-Ala10 15N-13C distances should be

Figure 4.22: Application of REDOR to Distance Measurement in a Model Substance
13C-detected 13C/15N REDOR data for glycine-1-13C,15N (5% labeled molecules). REDOR
build-up curves measured with (asterisks) and without (open circles) PSL. Error bars shown
for data without PSL represent uncertainty derived from the root-mean-squared noise in the
experimental spectra. Corresponding uncertainty for data with PSL is about equal to the size
of the symbols. Copied from: Aneta T. Petkova and Robert Tycko “Sensitivity Enhancement in
Structural Measurements by Solid State NMR through Pulsed Spin Locking”, Journal of
Magnetic Resonance 155, 293-299 (2002).
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approximately 4.2 Å and 5.6 Å, respectively, based on examination of a-helical

segments of proteins with known high-resolution structures.

Figure 4.23 a and b shows 13C-detected REDOR S (a) and S0 (b) spectra of the

frozen 15N,13C2-MB(i+4)EK solution with a 38.8 ms REDOR dephasing period. The

carbonyl signal intensity in the S spectrum is clearly less than in the S0 spectrum,

demonstrating the REDOR dephasing effect. Figure 4.23 c shows the dependence of

Figure 4.23: Application of REDOR to Distance Measurements in Proteins
Copied from: John J. Balbach, Jun Yang, David P. Weliky, Peter J. Steinbach, Vitali Tugarinov,
Jacob Anglister, and Robert Tycko “Probing hydrogen bonds in the antibody-bound HIV-1
gp120 V3 loop by solid state NMR REDOR measurements”, Journal of Biomolecular NMR, 16:
313-327, 2000.

13C NMR spectra of the triply labeled
MB(i+4)EK sample obtained with a REDOR
pulse sequence, both with (a) and without (b)
the application of 15N pulses. The period for
REDOR dephasing is 38.8 ms. Each spectrum
results from 3600 scans. The difference in
intensity of the carbonyl signal at 177 ppm is
due to 13C-15N dephasing when the 15N
pulses are applied. Asterisks indicate
spinning sidebands.

c) REDOR dephasing curve for the triply
labeled MB(i+4)EK sample. The ordinate
represents the ratio of carbonyl signal
intensities with (S1) and without (S0) the
application of 15N pulses. Filled circles are
experimental data points. The solid line is a
simulated dephasing curve, assuming that
40% of the carbonyl 13C nuclei are
dephased by dipole-dipole coupling to 15N
with an internuclear distance of 4.2 Å, 40%
are dephased by coupling to 15N with an
internuclear distance of 5.6 Å, and 20% are
not coupled to 15N.

c)a)

b)
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S/S0, measured by integrating the carbonyl 13C signal intensities in spectra such as in

Figure 4.23 a and b over the range from 172 ppm to 182 ppm, on the dephasing

period. The simulated dephasing curve in Figure 4.23 c was calculated with the

assumption that 40% of the carbonyl 13C nuclei are coupled to a 15N nucleus at a 4.2 Å

distance, 40% are coupled to a 15N nucleus at a 5.6 Å distance, and 20% are not

coupled to 15N nuclei. The uncoupled 13C nuclei probably include natural-abundance

carbonyl 13C nuclei that are more than 6 Å away from the 15N label at Ala8 in helical

MB(iC4)EK molecules and 13C labels in MB(i+4)EK molecules that are non-helical, in

roughly equal numbers. The good agreement between the simulated REDOR

dephasing curve and the experimental data supports the predominance of the α-

helical conformation in frozen solutions of MB(i+4)EK and establishes our ability to

detect 15N-13C dipole-dipole couplings in the range that is relevant to the RP135/0.5β

Fab measurements described above.”

4.4 Recoupling Sequences With CW RF Irradiation

Using cw rf irradiation we can introduce interference effects between the rf-

nutation frequency of the spins and the MAS frequency of the sample rotation. One

such effect we have already seen in Chapter 7.2 in the description of cross polarization

under MAS. There we have seen that we had to adjust the difference of the two

nutation frequencies such that they equal one or two times the spinning frequency,

i.e., , in order to obtain a time-independent part of the dipolar

coupling.

Similar effects can also be observed in homonuclear cw rf irradiation. We

observe recoupling effects for several conditions which are illustrated by the

experimental cw decoupling line intensity in Figure 4.24: (i) For we find a

recoupling of the homonuclear dipolar coupling. This condition is called

homonuclear rotary resonance (HORROR). The line intensity of the decoupled line is

increased due to the enhanced “self decoupling” (see Chapter 8.1.2) (ii) For

we find a recoupling of the CSA tensor, the heteronuclear dipolar coupling and the

homonuclear dipolar coupling. (iii) For we find a recoupling of the CSA

ω1S ω1I– m ωr⋅=

ω1 ωr 2⁄=

ω1 ωr=

ω1 2ωr=
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tensor and the heteronuclear dipolar coupling. The last two conditions are called

rotary resonance (R3). Note, that rotary resonance (R3) and rotational resonance (R2)

are very different phenomena and should not be mixed up. They are manifest in the

line intensity under cw decoupling as very low intensities due to the reintroduction of

the heteronuclear dipolar coupling. (iv) There are also higher-order rotary-resonance

conditions ( and ) but they are much weaker and more difficult to

observe. (v) There is also a fractional rotary-resonance condition at which

is also quite weak and can only be observed at fast MAS. There are currently no

applications for this recoupling condition.
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Figure 4.24: Recoupling Conditions Under CW RF Irradiation
Line intensity of the α-carbon resonance in 2-13C glycine under cw rf irradiation as a function
of the rf-field amplitude. The MAS frequency was 68.5 kHz. One can clearly see the strong
rotary-resonance conditions as intensity minima because the heteronuclear dipolar coupling
is reintroduced. The higher-order rotary-resonance conditions are much weaker. At the
HORROR condition the line intensity is increased due to the “self decoupling” (see Chapter
8.1.2).
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We have seen in the description of cw decoupling (Chpater 8.1.2) that such a

Hamiltonian with two time dependencies can be analyzed using Floquet theory. The

Fourier coefficients of the interaction-frame Hamiltonian for an INS spin system under

cw irradiation of the I spins was given by Eq. [8.3] as

. [4.46]

We can use the effective Hamiltonians obtained from the Floquet description also to

characterize the resonance conditions. For a resonance condition which is

characterized by , the effective Hamiltonian is given by

. [4.47]

4.4.1 HORROR and DREAM

4.4.1.1 Introduction

In the homonuclear rotary-resonance experiment (HORROR) the rf-field

amplitude is adjusted such that the condition

[4.48]

is fulfilled. Under this condition the homonuclear dipolar coupling is not averaged

out and one observes polarization transfer between dipolar coupled spins. Due to the

resonance condition, the rf-field amplitude in the HORROR experiment is quite low.
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This leads, on one hand, to a high sensitivity of the experiment to resonance offsets

but allows on the other hand very efficient decoupling of the protons. The DREAM

(dipolar recoupling enhanced by amplitude modulation) experiment is an adiabatic

version of the HORROR experiment where we sweep through the HORROR

condition. In this implementation, the very narrow matching condition as well as the

sensitivity of the HORROR experiment to resonance offsets is significantly reduced.

As a polarization-transfer method, the HORROR or DREAM experiment is

usually employed as the mixing step in a two-dimensional experiment as shown in

Figure 4.25. After the initial cross polarization, the magnetization is frequency

labelled during . The polarization transfer during happens under the HORROR

condition or a DREAM sweep (dotted line) and the signal is the detected during .

This leads to a two-dimensional homonuclear chemical-shift correlation spectrum

where we observe cross peaks if two spins are dipolar coupled. The HORROR and

DREAM experiment can also be used as a double-quantum filter in solid-state NMR

under MAS. Especially the DREAM experiment shows a very high efficiency due to

the adiabatic nature of the experiment.

Figure 4.25: Pulse Sequence for the HORROR and DREAM Experiment
After an initial cross-polarization period, the magnetization is frequency labelled during .
The polarization transfer during happens under the HORROR condition or a DREAM
sweep (dotted line) and the signal is then detected during . This leads to a two-dimensional
homonuclear chemical-shift correlation spectrum where we observe cross peaks if two spins
are dipolar coupled.
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4.4.1.2 Theoretical Description

The resonance condition in terms of the Floquet formalism are given by

where equals and the effective Hamiltonian is given

by

. [4.49]

To illustrate the similarity of the DREAM experiment with the rotational-

resonance experiment, we will also discuss the DREAM experiment in terms of

average Hamiltonians in the double-quantum and zero-quantum subspaces. The

Hamiltonian for a homonuclear dipolar coupled two-spin system under the

HORROR condition in the tilted frame of reference (rf along the z axis) is given by

[4.50]

if we assume that the rf field amplitude is much larger than the chemical shifts. We

can again split up the Hamiltonian into two commuting subspaces, the zero-quantum

and the double-quantum Hamiltonian

[4.51]

with

. [4.52]

The initial density operator is given by which gives in the two sub

spaces

. [4.53]
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Σ

––=

*̂
Δ

t( )
1
4
---ωSS

1 2,( ) t( )1̂
Δ 1

4
---ωSS

1 2,( ) t( )Ŝx
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The transformation into the interaction-frame representation with

[4.54]

leads to a time-dependent double-quantum Hamiltonian in the interaction frame of

the form

[4.55]

where we have again neglected the terms proportional to the identity operator. We

expand again the time-dependent dipolar coupling in the Fourier series and obtain in

full analogy to the treatment of rotational resonance in Chapter 4.2.2.2 a non-

vanishing zeroth-order average Hamiltonian for  of

. [4.56]

Except for a different scaling of the effective Hamiltonian and the fact that we

consider now the double-quantum sub space of the Hamiltonian instead of the zero-

quantum subspace, we obtain the same zeroth-order average Hamiltonian as in

rotational-resonance recoupling. Figure 4.26 shows a simulated polarization-transfer

curve where the initial density operator is and the expectation value of

is plotted as a function of the mixing time. One can clearly see that the transferred

polarization has a negative sign which is due to the double-quantum nature of the

HORROR recoupling condition. This can be seen if we write the density operator as

the sum of the zero-quantum and double-quantum sub space

[4.57]

and

[4.58]
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Σ

ωefft( )sin–+=
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[4.59]

is the effective angle-dependent nutation frequency of the double-quantum subspace

under the HORROR condition.

If the chemical-shift offsets cannot be neglected, we have to describe the

HORROR experiment in a tilted frame where the z direction is along the effective

field direction. The Hamiltonian in this case is given by

[4.60]
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Figure 4.26: Polarization Transfer Under the HORROR Condition
Time dependence of the polarization transfer from to under the HORROR condition.
Due to the double-quantum nature of the polarization transfer, the transferred polarization
appears with negative intensity. The maximum polarization transfer is 73% as one expects for
a -encoded pulse sequence.
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which is the same Hamiltonian as in the case of the rotational-resonance tickling

experiment. We again transform the Hamiltonian into the tilted frame by a rotation of

each spin about with an angle . The effective fields are then

given by . We now have to match the sum of the effective fields

by the MAS frequency and we assume that the carrier frequency is in the center

between the two chemical shifts. This behavior is illustrated in Figure 4.11a which

shows the effective fields. In the case of the HORROR recoupling we assume that the

rf fields are larger than the chemical-shift offsets. The Hamiltonian in the tilted frame

is the same as given by Eq. [4.20] and the corresponding matching conditions is

defined by

. [4.61]

The HORROR condition is a double-quantum recoupling condition while the

rotational-resonance condition is a zero-quantum recoupling condition. In the tilted

frame, however, we see a continuos transition between the two recoupling conditions.

This illustrates that in the tilted frame we obtain a partial recoupling in both

subspaces of the Hamiltonian.

The HORROR experiment can easily be implemented as an adiabatic

experiment which has been called DREAM. The effective slowly time-dependent

Hamiltonian in the interaction-frame representation is given by

[4.62]

where the rf-field amplitude is changed such that we sweep through the HORROR

condition. If one prepares an initial density operator which is proportional to one

obtains after an adiabatic passage through the HORROR condition a final density

operator which is given by . This corresponds to a full polarization transfer from

to . Since the polarization transfer is not oscillatory with the effective angle-

dependent dipolar coupling frequency one can, in principle, reach polarization-

transfer efficiencies of 100% in a powder sample. In addition to the higher efficiency,
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Σ 3

8 2
---------- 2β 1 2,( )( )δD

1 2,( )sin Ŝx
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the sensitivity to the precise setting of the matching condition is significantly reduced

compared to the standard HORROR experiment.

4.4.1.3 Examples

Figure 4.27 shows a two-dimensional chemical-shift correlation spectrum of U-
13C-tyrosine at a spinning frequency of = 26 kHz using the pulse sequence of

Figure 4.25 with an adiabatic DREAM sweep through the HORROR condition. The
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Figure 4.27: Two-Dimensional Chemical-Shift Correlation Spectrum Using DREAM
Two-dimensional chemical-shift correlation spectrum of U-13C-tyrosine using the pulse
sequence of Figure 4.25. The total duration of the sweep was set to 0.5 ms leading to a non
adiabatic behavior. The amplitude of the sweep at the center point was chosen to be =
11.5 kHz. The lines indicate the directly bonded carbon atoms while the arrows indicated
cross peaks in phase with the signals on the diagonal due to multi-step transfers.
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spectrum shows the characteristic sign change of double-quantum polarization

transfer of the cross peaks with respect to the diagonal peaks. All negative cross peaks

indicate correlations between directly bond carbon atoms while positive cross peaks

indicate multi-step or relay polarization transfer where the polarization is transferred

via an intermediate spin. This shows that multi-step transfer through one-bond

dipolar couplings can be faster than the direct transfer through a long-range dipolar

coupling. Some of the big advantages of the DREAM method compared to other

broadband homonuclear polarization-transfer schemes is its low rf-field requirement

and the fact that the method performs better at higher MAS spinning frequencies.

One can also use the DREAM sweep as an efficient spin-pair filter under MAS

as is shown in Figure 4.28. This is an important application to suppress natural-

abundance background signals in a partially labelled compound and high efficiencies

as well as good suppression of the isolated spins is important. The sample consisted

of a mixture of 1-13C1-alanine, natural-abundance methionine and natural-abundance

Figure 4.28: Spin-Pair Filter Under MAS Using the DREAM Sequence
(a) Cross polarization and (b) DREAM SPS spectra of a mixture of 1-13C1-alanine, natural-
abundance methionine and natural-abundance iso-leucine. The three substances were mixed
in approximately equal weight parts and the sample restricted to the central region of the
rotor with a total length of about 3 mm. The efficiency of the spin-pair filter is about 61%.
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iso-leucine. The three substances were mixed in approximately equal weight parts.

The suppression of the isolated spins is better than 99% and the efficiency of the spin-

pair filter is about 61%. Under fully optimized conditions in test substances, filter

efficiencies of better than 80% have been reached. The pulse sequence used to

implement the DREAM spin-pair selection is shown in Figure 4.29. It is not based on a

double-quantum but on the inversion properties of coupled and uncoupled spin-pairs

under the DREAM sweep as illustrated in more detail in Figure 4.30. By adding or

subtracting the appropriate scans one can either select the coupled spin pairs or the

uncoupled, isolated spins.

4.4.2 Rotary-Resonance Recoupling (R3)

4.4.2.1 Introduction

As we have seen in Figure 4.24 there are also recoupling conditions where the

rf-field amplitude is matched to an integer multiple of the spinning frequency. The

condition

[4.63]

for n = 1,2 is called the rotary-resonance condition. At the n = 1 rotary resonance

condition, the chemical-shift tensor, the heteronuclear dipolar coupling, and the

homonuclear dipolar coupling are all partially recoupled. At the n = 2 rotary

resonance condition, only the chemical-shift tensor and the heteronuclear dipolar

coupling are partially recoupled. Higher-order rotary-resonance conditions are

possible if several interactions are present at the same time but they are significantly

weaker than the n = 1,2 rotary-resonance condition as can be seen in Figure 4.24

which shows only a weak decrease in the line intensity for the n = 3,4 rotary-

resonance condition. The rotary-resonance recoupling experiment is mainly used to

measure tensor values under MAS (Figure 4.31) and not so often for polarization

transfer experiments.

nωr ω1=
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Figure 4.29: Pulse-Sequence for the DREAM Spin-Pair Filter
(a) Pulse sequence for the DREAM spin-pair selective experiments. (b) Four different
amplitude shapes which can be used in the spin-pair filter experiment and appropriate
modification of the receiver phase. The up-down and the down-up scan lead to an inversion
of the dipolar coupled spins while isolated spins stay unchanged. The up-up and down-down
scans leave all spins unchanged. Subtraction of the two type of experiments leads to a
suppression of the isolated spins. This principle is illustrated in more detail in Figure 4.30
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Figure 4.30: Principle of DREAM Spin-Pair Selection
Schematic representation of a DREAM spin-pair filter. The odd scans lead to an inversion of
the magnetization of coupled spin pairs while they do not change the magnetization of
uncoupled spins. The even scans leave coupled and uncoupled spins invariant. The difference
of the two experiments yields a spectrum that contains only signals from the coupled spins.
One could also add the two scans to select the signals from the uncoupled spins only.
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4.4.2.2 Theoretical Description

The resonance condition in terms of the Floquet formalism are given by

where equals and for the n = 1 and

for the n = 2 rotary-resonance condition. Using Eqs. [4.46] and [4.47], we can directly

write down the effective Hamiltonian in the interaction frame. For the n = 1 rotary-

resonance condition we obtain

[4.64]

while for the n = 2 condition we obtain

Figure 4.31: Pulse Sequence for the R3 experiment to measure CSA tensors
After an initial cross-polarization period, the magnetization evolves during under the R3

condition leading to a recoupling of the CSA tensor. The heteronuclear dipolar coupling is not
recoupled if the decoupling power level is adjusted correctly. The signal is then detected
during . This leads to a two-dimensional correlation spectrum of the CSA tensor and the
isotropic chemical shift.
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. [4.65]

The n = 1 and 2 rotary-resonance conditions recouple the chemical-shift tensor and

the heteronuclear dipolar coupling. At the n = 1 condition we obtain in adiition also a

recoupling of the homonuclear dipolar coupling. Higher order rotary-resonance

conditions can also be calculated using the Floquet formalism.

4.4.2.3 Examples

Rotary-resonance recoupling has been used in MAS solid-state NMR to

measure the CSA tensors of isolated spins by reintroducing the CSA tensor during

in a two-dimensional correlation experiment. Figure 4.31 shows the basic 2D pulse

sequence which can be used to measure the CSA tensor. A more advanced application

is the measurement of dynamics by recording two-dimensional CSA-CSA tensor-

correlation spectra under MAS (Figure 4.32). Such an experiment requires, however,
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Figure 4.32: Pulse Sequence for 3D R3 CSA tensor correlation
After an initial cross-polarization period, the magnetization evolves during under the R3

condition leading to a recoupling of the CSA tensor. The magnetization is stored along the z
direction and evolves again during under R3 recoupling. The signal is then detected during

. This leads to a three-dimensional correlation spectrum of the CSA tensor with itself and
the isotropic chemical shift.
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the acquisition of a three-dimensional data set since the rotary-resonance recoupling

for the CSA tensor correlation has to be in an indirect dimension while the direct

dimension provides the resolution for the chemical-shift separation. Such a spectrum

is very similar to a static 2D chemical-exchange powder correlation spectrum but in

addition it provides chemical-shift resolution in the direct dimension where all the

anisotropic interactions are averaged to zero.

Figure 4.33 shows an application to the chemical-exchange problem of solid

tropolone. Using two-dimensional MAS exchange spectroscopy one can show that

there is a pair-wise exchange between the carbon atoms 1-2, 4-6, and 3-7. The carbon

atom C5 remains unchanged for symmetry reasons (Fig. 4.33a). X-ray diffraction

measurements showed sharp reflections indicating that the exchange process does

not perturb the crystal symmetry. This can be explained by flips of the molecule

along with simultaneous hydrogen transfer which basically regenerates the original

molecular conformation where the carbon atoms 1-2, 4-6, and 3-7 are exchanged.

More detailed studies by an analysis of the side-band pattern in MAS spectra showed

that there is also molecular self diffusion in the crystal between several magnetically

equivalent and non-equivalent sides (Fig 4.33b). This self diffusion is accompanied by

-ring flips and hydrogen transfer in some of the cases. The CSA-tensor correlation

spectra (Fig. 4.33c) for each of the sites are a superposition of all the four possible

processes weighed by their probability. A fit of the tensor patterns allows the

extraction of the CSA tensor from a normal two-dimensional R3 spectrum. The 2D

CSA patterns can now be fitted with the parameters of the dynamic process, i.e., the

probabilities and the geometry of the four different processes. This allows a full

characterization of the dynamics in tropolone which is more complicated using other

techniques since they either lack the resolution (static methods) or do not provide

easy access to tensor-correlation patterns (MAS methods).

π

π
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Figure 4.33: 3D R3 Exchange Spectrum of Tropolone
a) Standard 2D MAS exchange spectrum of tropolone ( = 3 s, = 8 kHz). The exchange
looks like a two-site exchange between carbon atoms 1-2, 4-6, and 3-7. The exchange process,
however, is more complicated as can be seen from X-ray diffraction and spinning side-band
intensity analysis. The model which agrees with experimental observations is schematically
shown in b). There is translational lattice diffusion between equivalent and non-equivalent
sites some of which are combined with a simultaneous hydrogen transfer. c) The CSA tensor
patterns allow the fit of the CSA parameters and the dynamic processes (angles and
populations).
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4.5 Recoupling Sequences With Continuous but Phase-Modulated

Irradiation

4.5.1 C-Type and R-Type Sequences

4.5.1.1 Introduction

A few years ago, a new type of rotor-synchronized recoupling sequences was

introduced. They are based on continuous rf irradiation with phase shifted pulses

where an integer number of pulse elements spans an integer number of rotor cycles.

The first example of such a sequence was the C7 double-quantum recoupling

sequence which is shown in Figure 4.34. The sequence contains seven identical blocks

each of which is phase shifted by relative to the previous one. The basic blocks

consists of two pulses which are phase shifted by 180°. The seven blocks are

synchronized with two rotor cycles. This leads to an rf-field requirement of

. [4.66]

The synchronization of the pulses and the MAS rotation is shown graphically in

Figure 4.34. As in the case of the HORROR recoupling, this sequence generates a pure

double-quantum Hamiltonian and is encoded since only one of the components of

the dipolar Hamiltonian is retained. There were modifications of the C7 sequence

suggested, like the POST-C7 sequence where the basic building block was replaced by

a element which had better offset compensation than the

original element of the C7 sequence. The CMR-7 sequence uses a super

cycle with two different basic elements and the SPC-5 sequence uses the POST

element but has only five elements per two rotor cycles reducing the rf-field

requirement to .

Since the introduction of these first sequences, the classification of such

sequences has been systematized and there are two classes of sequences:

• sequences consist of a basic rf-building block called “C” which rotates the

spins through an integer multiple of a rotation. This basic building block is
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repeated N times fit into n rotor periods with a phase shift between two C elements

of . One can interpret this such that the space part of the Hamiltonian is

rotated n times while the spin part is rotated times. The rf-field requirement of

such a sequence depends on the length of the basic C element. If the basic C element

contains z rotation, the condition defines the rf-field

requirement.

Figure 4.34: Pulse Sequence for a C7 Sequence
C7 pulse sequence for broad-band homonuclear double-quantum recoupling. The sequence
consists of seven pulse elements which are phase shifted by . The whole sequence is
synchronized with two rotor periods. Each pulse element consists of two pulses which are
phase shifted by .
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• sequences consist of a basic rf-building block called “R” which rotates the

spins through 180° about the x axis. The full sequence which spans n rotor cycles is

built up of N/2 elements where the phase describes the rotation

axis of the 180° pulse R.

Such sequences can be described by rotations of the spherical tensors in spin and real

space. Symmetry-based selection rules can be defined for both types of sequences

which allow in a simple way to predict which spin interactions are allowed or

forbidden in a C-type or R-type sequence.

4.5.1.2 Theoretical Description

We can write the time-dependent Hamiltonian under MAS as

[4.67]

where (i) describes one of the spin interactions with a tensor rank in real space and

tensor rank in spin space as defined in Table 2.2. The are the spatial tensor

operators of interaction (i) in the rotor-fixed coordinate system as defined by Eq.

[4.15]. The general scheme and the notation used for the timing are shown in Figure

4.35 for the C-type and the R-type sequences. If we describe the spin rotations by

Euler angles we find time-symmetry relations for the Euler angles and of the rf

propagator at time point . For the C-type sequences the Euler angles during the

interval q are related to the Euler angles during the interval 0 by

. [4.68]

This can be understood by the fact that a full cycle of the C-type sequence has a

propagator which is unity and only the phase of the sequence is shifted. For the R-

type sequences the Euler angles during the interval q are related to the Euler angles

during the interval 0 by

. [4.69]
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This can be understood by the fact that a sequence leads to a rotation of the

density operator by around the z axis. The symmetry relations for the space part

of the Hamiltonian are defined by the rotation of the sample and are given by

. [4.70]

The laboratory-frame Hamiltonian during element q can, therefore, be

expressed through the symmetry relation by the Hamiltonian during the first cycle as

. [4.71]
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Figure 4.35: Definition of Rotor-Synchronized C-Type and R-Type Sequences.
The basic cycle E is used in a phase-shifted manner to build up the total pulse sequence which
consists of N elements and spans n rotor cycles.
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One can now transform the Hamiltonian into an interaction frame with the radio-

frequency irradiation. Based on the symmetry relation of the rf irradiation of Eqs.

[4.68] and [4.69], one can again express the Hamiltonian during the element q by the

Hamiltonian during the first cycle and obtains

[4.72]

for the C-type sequences and

[4.73]

for the R-type sequences. The main difference is the additional term which

comes from the additional term in Eq. [4.69]. This has major consequences for the

selection rules.

One can now calculate the average Hamiltonian over a full cycle of the pulse

sequence by integrating the various components of the interaction-frame

Hamiltonian. This can be a quite time-consuming procedure but there are some rules

which allow based on symmetry rules to decide which terms are averaged to zero and

which are not. For the C-type sequences one finds the following selection rule for the

zeroth-order average Hamiltonian

[4.74]

where Z is any integer. For the R-type sequences one finds a similar selection rule for

the zeroth-order average Hamiltonian

[4.75]

where is an integer which has the same parity (even or odd) as the spin-tensor

rank of the considered interaction. There are similar selection rules for higher-order

average Hamiltonians.
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Equations [4.74] and [4.75] allow us to decide very easily whether a certain

spin interaction is averaged out by a certain C-type or R-type pulse sequence. If the

interaction is not averaged based on the symmetry properties of the pulse sequence,

one has to calculate the scaling factor in order to know how large the averaged

interaction is. This amounts basically to an explicit calculation of the zeroth-order

average Hamiltonian which can also be done analytically for a general pulse sequence

of this type. The scaling factor is strongly influenced by the choice of the basic cycle

for the C-type or R-type sequence. There are no general rules which type of pulse

sequence performs best for what sequence and only numerical simulations and

experiments can tell.

One can use a space-spin selection diagram in order to graphically represent

the selection rules imposed by the pulse sequence. This is illustrated in Figure 4.36 for

the pulse sequence. The graphical representation plots the combination of all

possible values of with all possible values of . Only multiples of are

allowed and not averaged by the pulse sequence. Form Figure 4.36 we can see that the

, component and the , component (not shown) of the

dipolar-coupling tensor is not symmetry forbidden. All elements of the chemical-shift

tensor are averaged due to the symmetry condition but the ,

components of the isotropic chemical shift and the J coupling are symmetry allowed.

The heteronuclear dipolar coupling behaves exactly like the chemical-shift tensor and

is also averaged out. This shows that the sequence is a homonuclear double-

quantum recoupling sequence ( )which selects only the spatial

component and is therefore  encoded, i.e., independent of the Euler angle .

A second example for such space-spin selection diagrams is shown in Figure

4.37 for the sequence. In this case only even or odd multiples of 18/2 are

allowed depending on the parity of the spin rank of the interaction. From Figure

4.37 we can see that all elements of the dipolar-coupling tensor will be averaged out

by the sequence as well as all components of the isotropic chemical shift as well

as the isotropic J coupling (not shown). Only the , component of the

chemical-shift tensor is symmetry allowed. The heteronuclear dipolar-coupling tensor
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Figure 4.36: Space-Spin Selection Diagrams
Space-spin selection diagrams for the pulse sequence showing only the part. For
this sequence the parameters are , , and . The diagrams show that the CSA
tensor is averaged out while the , part of the dipolar coupling is allowed. The
isotropic contributions ( , ) of the J coupling and the chemical shift are also
retained.
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Figure 4.37: Space-Spin Selection Diagrams
Space-spin selection diagrams for the pulse sequence showing only the part. For
this sequence the parameters are , , and . The diagrams show that the
dipolar-coupling tensor is averaged out while the , part of the chemical-shift
tensor is symmetry allowed. The isotropic contributions ( , ) of the J coupling
(not shown) and the chemical shift are also averaged out.
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behaves in the same way as the chemical-shift tensor. Therefore, the ,

component of the chemical-shift tensor is also symmetry allowed.

One can also implement supercycles on top of the C-type or R-type sequences

to improve the suppression of unwanted pathways by eliminating higher-order

average Hamiltonian terms. The principle of these rotor-synchronized pulse

sequences has also been applied to heteronuclear experiments where two such

sequences are applied to the two nuclei. The two sequences can be of the same type

(C-type or R-type sequence) or different. Such heteronuclear sequences are beyond

the scope of this lecture.

4.5.1.3 Examples

There is an infinite number of possible sequences which can be implemented

using the C-type or R-type sequences. Their basic properties can be predicted by the

symmetry rules discussed in the last chapter. Their detailed properties, however, can

only be determined experimentally. here are many factors which play a role when

selecting one of the many sequences. A key factor is certainly the MAS spinning

frequency and the maximum rf-field requirements of the sequence. High MAS

frequencies mandate the use of sequences which have a lower rf-field requirement.

Another important factor is the required range of chemical-shift offsets which

depends on the intended application. As an example, the experimentally measured

offset dependence of various double-quantum recoupling sequences are shown in

Figure 4.38. There are clearly large differences which cannot be explained by the

zeroth-order average Hamiltonian approximation of the symmetry rules. This clearly

indicates that higher-order average Hamiltonian terms play a significant role

especially when offset effects are concerned.

Figure 4.39 shows an experimental example of a two-dimensional double-

quantum single-quantum correlation spectrum of fully labelled tyrosine using the

SC14 sequence.The SC14 sequence is a super-cycled sequence which has better offset

compensation (see Figure 4.38) than the underlying basic sequence. The

spectrum was recorded at a static magnetic field of 9.4 T and the sequence covers the

m 2= μ 1–=

C144
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full range of chemical shifts of about 20 kHz. Judging from Figure 4.38 it would have

not been possible to record such a spectrum with the basic sequence. The

spectrum was recorded with a short excitation time of 400 μs and a reconversion time

of 100 μs. Only double-quantum peaks between directly bond atoms can be seen in

the spectrum.

Figure 4.38: Offset Dependence of Various Double-Quantum Recoupling Sequences
Comparison of the offset dependence of the sequences , , and the super-cycled
SC14 sequence. In addition, a comparison with POST-C7 and SPC-5 is shown. (Copied from:
Andreas Brinkmann, Mattias Edén, and Malcolm H. Levitt “Synchronous helical pulse
sequences in magic-angle spinning nuclear magnetic resonance: Double quantum recoupling
of multiple-spin systems.” Journal of Chemical Physics 112, 8539-8554 (2000).)
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Figure 4.40 shows an experimental zero-quantum chemical-shift correlation

spectrum of tyrosine for a long mixing time of 9.9 ms using a super-cycled

sequence. Cross peaks between all the carbon atoms can be observed for the long

mixing time which indicates that the mixing sequence has distributed the

magnetization almost evenly over all the carbon atoms and that the offset range of
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Figure 4.39: Double-Quantum Spectrum of Tyrosine Using the SC14 Sequence
Two-dimensional double-quantum spectrum of [U 13C]- L-tyrosine, obtained at a field of 9.4 T
and a spinning frequency of 20 kHz, using the SC14 pulse sequence which is derived from the

sequence. The dashed lines are guides for the eye. (Copied from M. H. Levitt,
“Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR” in
“Encyclopedia of Nuclear Magnetic Resonance: Supplementary Volume” edited by D. M.
Grant and R. K. Harris (Wiley, Chichester, England, 2002), pp. 165-196.)
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this sequence is large enough to cover the full carbon chemical-shift range at a static

magnetic field of 9.4 T.
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Figure 4.40: Zero-Quantum Spectrum of Tyrosine Using the Sequence
Two-dimensional correlation spectrum of [U 13C]-L-tyrosine, obtained at a field of 9.4 T and a
spinning frequency of 23 kHz, using a super-cycled pulse sequence, with a mixing
interval of 9.9 ms. (Copied from M. H. Levitt, “Symmetry-Based Pulse Sequences in Magic-
Angle Spinning Solid-State NMR” in “Encyclopedia of Nuclear Magnetic Resonance:
Supplementary Volume” edited by D. M. Grant and R. K. Harris (Wiley, Chichester, England,
2002), pp. 165-196.)
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